求函数Y=sin(π/3-1/2X),X∈【-2π,2π】的单调增区间
答案:2 悬赏:10 手机版
解决时间 2021-03-19 07:47
- 提问者网友:疯孩纸
- 2021-03-18 12:07
求函数Y=sin(π/3-1/2X),X∈【-2π,2π】的单调增区间
最佳答案
- 五星知识达人网友:怙棘
- 2021-03-18 13:26
解:∵y=sin(π/3-1/2X)
∴y=﹣sin(1/2X-π/3)
∵2kπ+π/2≤1/2X-π/3≤2kπ+3π/2
∴4kπ+5π/3≤x≤4kπ+11π/3
又∵X∈[-2π,2π]
∴当 k=﹣1时,-2π≤x≤﹣π/3
当 k=0时,5π/3≤x≤11π/3
故y=sin(π/3-1/2X)X∈[-2π,2π]的单调增区间为[-2π,﹣π/3] 和 [5π/3,11π/3]
( 注:函数有两个或两个以上的单调区间,不能写成并集的形式。)
∴y=﹣sin(1/2X-π/3)
∵2kπ+π/2≤1/2X-π/3≤2kπ+3π/2
∴4kπ+5π/3≤x≤4kπ+11π/3
又∵X∈[-2π,2π]
∴当 k=﹣1时,-2π≤x≤﹣π/3
当 k=0时,5π/3≤x≤11π/3
故y=sin(π/3-1/2X)X∈[-2π,2π]的单调增区间为[-2π,﹣π/3] 和 [5π/3,11π/3]
( 注:函数有两个或两个以上的单调区间,不能写成并集的形式。)
全部回答
- 1楼网友:行路难
- 2021-03-18 14:10
y=3sin(π/6-3x)=-3sin(3x-π/6),x∈[-π/2,π/2]的单调递增区间即y=3sin(3x-π/6)x∈[-π/2,π/2]的单调递减区间,由2kπ π/2<=3x-π/6<=2kπ 3π/2,2kπ/3 2π/9<=x<=2kπ/3 5π/9, k=-1,0时-4π/9<=x<=-π/9,2π/9<=x<=5π/9,结合x∈[-π/2,π/2]得 y=3sin(π/6-3x)x∈[-π/2,π/2]的单调递增区间为:[-4π/9,-π/9],[2π/9,π/2]
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯