已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:
(1)4a+2b+c>0;(2)方程ax2+bx+c=0两根之和小于零;(3)y随x的增大而增大;(4)一次函数y=x+bc的图象一定不过第二象限,其中错误的个数是A.4个B.3个C.2个D.1个
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:(1)4a+2b+c>0;(2)方程ax2+bx+c=0两根之和小于零;(3)y随x的增大而增大
答案:2 悬赏:0 手机版
解决时间 2021-01-04 00:32
- 提问者网友:凉末
- 2021-01-02 23:36
最佳答案
- 五星知识达人网友:独行浪子会拥风
- 2021-01-03 00:44
B解析分析:根据函数的图象可知x=2时,函数值的正负性;并且可知与x轴有两个交点,即对应方程有两个实数根;函数的增减性需要找到其对称轴才知具体情况;由函数的图象还可知b、c的正负性,一次函数y=x+bc所经过的象限进而可知正确选项.解答:∵当x=2时,y=4a+2b+c,对应的y值即纵坐标为正,即4a+2b+c>0;故(1)正确;∵由二次函数y=ax2+bx+c(a≠0)的图象可知:函数图象与x轴有两个不同的交点,即对应方程有两个不相等的实数根;并且正根的绝对值较大,∴方程ax2+bx+c=0两根之和大于零;故(2)错误;∵函数的增减性需要找到其对称轴才知具体情况;不能在整个自变量取值范围内说y随x的增大而增大;故(3)错误;∵由图象可知:c<0,b<0,∴bc>0,∴一次函数y=x+bc的图象一定经过第二象限,故(4)错误;∴错误的个数为3个,故选B.点评:本题考查了二次函数图象各种性质:函数的增减性、与x轴的交点坐标、与y轴的交点坐标、以及一次函数的图象所经过的象限问题,准确掌握各种函数的性质是解题的关键.
全部回答
- 1楼网友:北方的南先生
- 2021-01-03 02:10
对的,就是这个意思
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯