函数f(x)是定义在(-1,1)上的奇函数,
①已知f(x)是单调减函数,求不等式f(1-a)+f(1-a2)<0的解;
②已知f(x)在区间[0,1)上是减函数,证明:f(x)是单调减函数.
函数f(x)是定义在(-1,1)上的奇函数,①已知f(x)是单调减函数,求不等式f(1-a)+f(1-a2)<0的解;②已知f(x)在区间[0,1)上是减函数,证明:
答案:2 悬赏:70 手机版
解决时间 2021-01-02 14:29
- 提问者网友:抽煙菂渘情少年
- 2021-01-02 00:06
最佳答案
- 五星知识达人网友:山有枢
- 2021-01-22 06:25
解:①f(1-a)<-f(1-a2)
∴f(1-a)<f(-1+a2)
∴1>1-a>-1+a2>-1即0<a<1????????????????????????????????
②设-1<x1<x2<1,只需证明f(x1)>f(x2)
i当0≤x1<x2<0时,显然有f(x1)>f(x2)成立;????????????
ii当-1<x1<x2≤0时,有1>-x1>-x2≥0
∴f(-x1)<?(-x2)∴-f(x1)<-f(x2)
即:f(x1)>f(x2)成立;??????????????????????????????????????
iii当-1<x1<0<x2<1时,有f(x1)>f(0)且?(0)>f(x2)
即:f(x1)>f(x2)成立;
综上,当-1<x1<x2<1时,总有:f(0)>f(x2)
即:f(x)是单调减函数.解析分析:①先利用奇偶性化简成f(1-a)<f(a2-1),再利用单调性建立不等关系,根据定义域的范围建立两个不等关系,解不等式组即可.②设-1<x1<x2<1,只需证明f(x1)>f(x2).将x1,x2的取值分类求证.点评:本题主要考查了函数奇偶性的应用,以及单调性的应用,这两个性质是函数的重要性质.利用函数的奇偶性与单调性解抽象不等式.应先将抽象不等式转化为具体不等式.
∴f(1-a)<f(-1+a2)
∴1>1-a>-1+a2>-1即0<a<1????????????????????????????????
②设-1<x1<x2<1,只需证明f(x1)>f(x2)
i当0≤x1<x2<0时,显然有f(x1)>f(x2)成立;????????????
ii当-1<x1<x2≤0时,有1>-x1>-x2≥0
∴f(-x1)<?(-x2)∴-f(x1)<-f(x2)
即:f(x1)>f(x2)成立;??????????????????????????????????????
iii当-1<x1<0<x2<1时,有f(x1)>f(0)且?(0)>f(x2)
即:f(x1)>f(x2)成立;
综上,当-1<x1<x2<1时,总有:f(0)>f(x2)
即:f(x)是单调减函数.解析分析:①先利用奇偶性化简成f(1-a)<f(a2-1),再利用单调性建立不等关系,根据定义域的范围建立两个不等关系,解不等式组即可.②设-1<x1<x2<1,只需证明f(x1)>f(x2).将x1,x2的取值分类求证.点评:本题主要考查了函数奇偶性的应用,以及单调性的应用,这两个性质是函数的重要性质.利用函数的奇偶性与单调性解抽象不等式.应先将抽象不等式转化为具体不等式.
全部回答
- 1楼网友:动情书生
- 2021-01-22 07:50
我也是这个答案
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯