永发信息网

单选题已知函数f(x)满足:①?x,y∈R,f(x+y)=f(x)+f(y),②?x>

答案:2  悬赏:70  手机版
解决时间 2021-01-03 11:57
单选题 已知函数f(x)满足:①?x,y∈R,f(x+y)=f(x)+f(y),②?x>0,f(x)>0,则A.f(x)是偶函数且在(0,+∞)上单调递减B.f(x)是偶函数且在(0,+∞)上单调递增C.f(x)是奇函数且单调递减D.f(x)是奇函数且单调递增
最佳答案
D解析分析:①先判断f(x)奇偶性,即找出f(-x)与f(x)之间的关系,令y=-x,有f(0)=f(x)+f(-x),故问题转化为求f(0)即可,可对x、y都赋值为0;②再依据函数单调性的定义判断函数的单调性,任取x1<x2,充分利用条件当x>0时,有f(x)>0与f(x+y)=f(x)+f(y),即可判定f(x2)>f(x1)从而得出其单调性.解答:显然f(x)的定义域是R,关于原点对称.又∵函数对一切x、y都有f(x+y)=f(x)+f(y),∴令x=y=0,得f(0)=2f(0),∴f(0)=0.再令y=-x,得f(0)=f(x)+f(-x),∴f(-x)=-f(x),∴f(x)为奇函数.任取x1<x2,x2-x1>0,则f(x2-x1)>0∴f(x2)+f(-x1)>0;对f(x+y)=f(x)+f(y)取x=y=0得:f(0)=0,再取y=-x得f(x)+f(-x)=0即f(-x)=-f(x),∴有f(x2)-f(x1)>0∴f(x2)>f(x1)∴f(x)在R上递增.故选D.点评:本题考点是抽象函数及其性质,在研究其奇偶性时本题采取了连续赋值的技巧,这是判断抽象函数性质时常用的一种探究的方式,属于中档题.
全部回答
好好学习下
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
下列词语的书写正确无误的一项是 (4分)A.
塔桥是英国最古老的大桥用英语翻译
下列各图中,属于内能转化为机械能的是A.两手
一个标有“220V?350W”字样的电饭锅,在额定
某校初一(1)班40名同学为地震灾区捐款,共
如图,从甲地到乙地有A、B两条路可走,这两条
舒城县民政局办公位置在哪啊?好找么?
活期利率是什么意思
万用表测量的交流电压是有效值吗
单选题某食品厂附近的小河,鱼虾绝迹,其主要
东风本田总汽车厂在哪里?
齐齐哈尔市新农村建设土地房屋拆迁补偿标准是
请问,服务器怎么进不去,说网络通信错误??
Theclothingstore_____________asale.Theclot
六安市民政局办公地址在什么地方?我要处理点
推荐资讯
蘑菇街有哪些付款方式
三国演义文言文的全文
捉迷藏霍建华妻子
单选题下列化学反应基本类型中一定是氧化还原
同志们,有提前交了暖气费的吗,到底能节省多
i5 4590+华硕b85主板+影驰gtx960黑将能装小机
除哪一项外,其余都是毁林造田、大面积砍伐森
单选题孔子主张“仁”与“礼”,墨子主张“兼
桂林市城管监察支队位置在什么地方啊,我要过
冒险岛打金币最快的地方在哪?
等腰三角形的一条边长为6,另一边长为13,则
长期操作电脑会导致肩膀酸疼么?
正方形一边上任一点到这个正方形两条对角线的
阴历怎么看 ?