已知:如图,AB是⊙O的直径,点C是⊙O上的一点,CD交AB的延长线于D,∠DCB=∠CAB.
(1)求证:CD为⊙O的切线.
(2)若CD=4,BD=2,求⊙O的半径长.
已知:如图,AB是⊙O的直径,点C是⊙O上的一点,CD交AB的延长线于D,∠DCB=∠CAB.(1)求证:CD为⊙O的切线.(2)若CD=4,BD=2,求⊙O的半径长
答案:2 悬赏:50 手机版
解决时间 2021-04-07 18:16
- 提问者网友:临风不自傲
- 2021-04-07 10:17
最佳答案
- 五星知识达人网友:逃夭
- 2021-04-07 11:03
(1)证明:∵∠DCB=∠CAB,∠CAB=∠ACO,
∴∠DCB=∠ACO,
∵AB是⊙O的直径,
∴∠ACB=90°,
即∠ACO+∠OCB=90°
∴∠DCB+∠OCB=90°,
∴∠OCD=90°
∴CD为⊙O的切线;
(2)解:设⊙O的半径为R,则OD=R+2,
∵CD=4,BD=2,∠OCD=90°,
由勾股定理得R2+42=(R+2)2,
解得:R=3,
∴⊙O的半径长为3.解析分析:(1)要证CD为⊙O的切线,只要证明OC⊥CD即可,由AB是⊙O的直径可得∠ACB=90°,只要∠DCB=∠ACO,由半径及已知∠DCB=∠CAB可得
∴∠DCB=∠ACO,
∵AB是⊙O的直径,
∴∠ACB=90°,
即∠ACO+∠OCB=90°
∴∠DCB+∠OCB=90°,
∴∠OCD=90°
∴CD为⊙O的切线;
(2)解:设⊙O的半径为R,则OD=R+2,
∵CD=4,BD=2,∠OCD=90°,
由勾股定理得R2+42=(R+2)2,
解得:R=3,
∴⊙O的半径长为3.解析分析:(1)要证CD为⊙O的切线,只要证明OC⊥CD即可,由AB是⊙O的直径可得∠ACB=90°,只要∠DCB=∠ACO,由半径及已知∠DCB=∠CAB可得
全部回答
- 1楼网友:長槍戰八方
- 2021-04-07 11:39
正好我需要
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯