解答题已知函数y=f(x)是定义在R上的奇函数,且f(2)=0,对任意x∈R,都有f(
答案:2 悬赏:60 手机版
解决时间 2021-03-25 00:14
- 提问者网友:玫瑰园
- 2021-03-24 01:00
解答题
已知函数y=f(x)是定义在R上的奇函数,且f(2)=0,对任意x∈R,都有f(x+4)=f(x)+f(4)成立,则f(2008)=________.
最佳答案
- 五星知识达人网友:不甚了了
- 2021-03-24 02:19
解:∵任意x∈R,都有f(x+4)=f(x)+f(4)成立,
∴f(4)=f(0)+f(4),…(1)
f(8)=f(4)+f(4),…(2)
f(12)=f(8)+f(4),…(3)
…
f(2008)=f(2004)+f(4),…(502)
将这502个式子相加,得f(2008)=f(0)+502f(4)…(*).
∵函数y=f(x)是定义在R上的奇函数,
∴f(-0)=-f(0)=f(0),可得f(0)=0
对于f(x+4)=f(x)+f(4)取x=-2,得f(-2+4)=f(-2)+f(4)
又因为f(2)=0,所以f(-2)=f(2)=0
∴f(4)=f(-2)-f(2)=0
将f(0)=0与f(4)=0代入(*),得f(2008)=0
故
∴f(4)=f(0)+f(4),…(1)
f(8)=f(4)+f(4),…(2)
f(12)=f(8)+f(4),…(3)
…
f(2008)=f(2004)+f(4),…(502)
将这502个式子相加,得f(2008)=f(0)+502f(4)…(*).
∵函数y=f(x)是定义在R上的奇函数,
∴f(-0)=-f(0)=f(0),可得f(0)=0
对于f(x+4)=f(x)+f(4)取x=-2,得f(-2+4)=f(-2)+f(4)
又因为f(2)=0,所以f(-2)=f(2)=0
∴f(4)=f(-2)-f(2)=0
将f(0)=0与f(4)=0代入(*),得f(2008)=0
故
全部回答
- 1楼网友:渊鱼
- 2021-03-24 03:44
感谢回答,我学习了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯