求证:tan(x-y)+tan(y-z)+tan(z-x)=tan(x-y)tan(y-z)tan(z-x)
答案:1 悬赏:70 手机版
解决时间 2021-08-21 11:29
- 提问者网友:聂風
- 2021-08-20 11:59
求证:tan(x-y)+tan(y-z)+tan(z-x)=tan(x-y)tan(y-z)tan(z-x)
最佳答案
- 五星知识达人网友:青灯有味
- 2021-08-20 12:37
两角和正切公式:
tan[(x-y)+(y-z)]=[tan(x-y)+tan(y-z)]/[1-tan(x-y)tan(y-z)]
tan(x-y)+tan(y-z)
=tan(x-y+y-z)*[1-tan(x-y)tan(y-z)]
=tan(x-z)*[1-tan(x-y)tan(y-z)]
=tan(x-z)-tan(x-z)tan(x-y)tan(y-z)
=-tan(z-x)+tan(z-x)tan(x-y)tan(y-z)
所以tan(x-y)+tan(y-z)+tan(z-x)=tan(x-y)tan(y-z)tan(z-x)成立
写得很清楚的,你难道还看不懂么?
tan[(x-y)+(y-z)]=[tan(x-y)+tan(y-z)]/[1-tan(x-y)tan(y-z)]
tan(x-y)+tan(y-z)
=tan(x-y+y-z)*[1-tan(x-y)tan(y-z)]
=tan(x-z)*[1-tan(x-y)tan(y-z)]
=tan(x-z)-tan(x-z)tan(x-y)tan(y-z)
=-tan(z-x)+tan(z-x)tan(x-y)tan(y-z)
所以tan(x-y)+tan(y-z)+tan(z-x)=tan(x-y)tan(y-z)tan(z-x)成立
写得很清楚的,你难道还看不懂么?
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯