完成推理填空:如图在△ABC中,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠C.
解:∵∠1+∠EFD=180°(邻补角定义),∠1+∠2=180°(已知?)
∴________????(?同角的补角相等?)
∴________???(内错角相等,两直线平行)
∴∠ADE=∠3________
∵∠3=∠B________
∴∠ADE=∠B(等量代换)
∴DE∥BC________
∴∠AED=∠C________.
完成推理填空:如图在△ABC中,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠C.解:∵∠1+∠EFD=180°(邻补角定义),∠1+∠2=180°(已知?
答案:2 悬赏:20 手机版
解决时间 2021-04-10 09:40
- 提问者网友:轮囘Li巡影
- 2021-04-09 10:30
最佳答案
- 五星知识达人网友:独行浪子会拥风
- 2021-04-09 11:24
∠EFD=∠2 AB∥EF (两直线平行,内错角相等) (已知) (同位角相等,两直线平行) (两直线平行,同位角相等)解析分析:首先根据∠1+∠EFD=180°和∠1+∠2=180°可以证明∠EFD=∠2,再根据内错角相等,两直线平行可得AB∥EF,进而得到∠ADE=∠3,再结合条件∠3=∠B可得∠ADE=∠B,进而得到DE∥BC,再由平行线的性质可得∠AED=∠C.解答:∵∠1+∠EFD=180°(邻补角定义),
又∵∠1+∠2=180°(已知),
∴∠EFD=∠2(同角的补角相等),
∴AB∥EF(内错角相等,两直线平行),
∴∠ADE=∠3(两直线平行,内错角相等),
∵∠3=∠B(已知),
∴∠ADE=∠B(等量代换),
∴DE∥BC(同位角相等,两直线平行),
∴∠AED=∠C(两直线平行,同位角相等).点评:此题主要考查了平行线的判定与性质,关键是掌握平行线的判定定理和性质定理.
又∵∠1+∠2=180°(已知),
∴∠EFD=∠2(同角的补角相等),
∴AB∥EF(内错角相等,两直线平行),
∴∠ADE=∠3(两直线平行,内错角相等),
∵∠3=∠B(已知),
∴∠ADE=∠B(等量代换),
∴DE∥BC(同位角相等,两直线平行),
∴∠AED=∠C(两直线平行,同位角相等).点评:此题主要考查了平行线的判定与性质,关键是掌握平行线的判定定理和性质定理.
全部回答
- 1楼网友:酒者煙囻
- 2021-04-09 11:53
这个问题的回答的对
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯