已知,a、b、c为△ABC的边长,b、c满足(b-2)2+|c-3|=0,且a为方程|a-4|=2的解,求△ABC的周长,并判断△ABC的形状.
答案:2 悬赏:40 手机版
解决时间 2021-04-11 09:08
- 提问者网友:雾里闻花香
- 2021-04-10 11:40
已知,a、b、c为△ABC的边长,b、c满足(b-2)2+|c-3|=0,且a为方程|a-4|=2的解,求△ABC的周长,并判断△ABC的形状.
最佳答案
- 五星知识达人网友:杯酒困英雄
- 2021-04-10 12:00
解:∵(b-2)2+|c-3|=0,
∴b-2=0,c-3=0,
∴b=2,c=3,
∵|a-4|=2,
∴a=6或2,
当a=6,b=2,c=3时不能构成三角形,
当a=2,b=2,c=3时周长为7,是等腰三角形.解析分析:根据a为方程|a-4|=2的解,可知a=6或2,再根据(b-2)2+|c-3|=0,可知b-2=0,c-3=0,可知b,c的值,再根据三角形的两边之和大于第三遍即可判断出△ABC的形状.点评:本题考查了三角形中两边之和大于第三边,以及非负数的性质,根据非负数的性质求出三边的长是关键,难度适中.
∴b-2=0,c-3=0,
∴b=2,c=3,
∵|a-4|=2,
∴a=6或2,
当a=6,b=2,c=3时不能构成三角形,
当a=2,b=2,c=3时周长为7,是等腰三角形.解析分析:根据a为方程|a-4|=2的解,可知a=6或2,再根据(b-2)2+|c-3|=0,可知b-2=0,c-3=0,可知b,c的值,再根据三角形的两边之和大于第三遍即可判断出△ABC的形状.点评:本题考查了三角形中两边之和大于第三边,以及非负数的性质,根据非负数的性质求出三边的长是关键,难度适中.
全部回答
- 1楼网友:旧脸谱
- 2021-04-10 13:30
我好好复习下
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯