设a,b,c都是奇数,证明方程ax²+bx+c=0没有有理根
答案:1 悬赏:0 手机版
解决时间 2021-08-20 18:28
- 提问者网友:自食苦果
- 2021-08-20 01:47
设a,b,c都是奇数,证明方程ax²+bx+c=0没有有理根
最佳答案
- 五星知识达人网友:话散在刀尖上
- 2021-08-20 01:57
假设这个方程的有理根x=d/f d和f互质
代入得ad^2 /f^2 +bd/f +c=0
即ad^2+bdf+cf^2=0
假设d为奇数
那么ad^2为奇数
bd为奇数
因为ad^2+bdf+cf^2=0 0是偶数 ad^2为奇数
所以bdf项和cf^2 项有一个是奇数 有一个是偶数
若bdf是奇数 那么f必为奇数 而cf^2也是奇数...矛盾
若cf^2是奇数 那么f是奇数 bdf也是奇数 矛盾
所以d只可以是偶数
当d为偶数时
ad^2为偶数
因为ad^2+bdf+cf^2=0 0是偶数 ad^2为偶数
所以bdf项和cf^2 项要么两项都是奇数 要么两项都为偶数
由于无论f为何值
bdf总为偶数
所以cf^2只能为偶数
所以f为偶数
因为d f都为偶数 与d和f互质矛盾
所以
ax²+bx+c=0没有有理根
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯