永发信息网

勾股定理可以讲的仔细点麽?

答案:5  悬赏:80  手机版
解决时间 2021-05-10 02:10
勾股定理可以讲的仔细点麽?
最佳答案


直角边AO的平方加上OB的平方等于OC的平方,即 AO^2+OB^2=AB^2

全部回答
在直角三角形中,斜边的平方等于对边和邻边的平方和.

勾股定理:   在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定 古埃及人利用打结作RT三角形理,又称毕达哥拉斯定理或毕氏定理(Pythagoras Theorem)。   定理:   如果直角三角形两直角边分别为a,b,斜边为c,那么a^2; +b^2; =c^2; ; 即直角三角形两直角边的平方和等于斜边的平方。

说明:我国古代学者把直角三角形的较短直角边称为“勾”,较长直角边为“股”,斜边称为“弦”,所以把这个定理成为“勾股定理”。勾股定理揭示了直角三角形边之间的关系。

【证法1】(梅文鼎证明)

  做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P.

  ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,

  ∴ ∠EGF = ∠BED,

  ∵ ∠EGF + ∠GEF = 90°,

  ∴ ∠BED + ∠GEF = 90°,

  ∴ ∠BEG =180°―90°= 90°

  又∵ AB = BE = EG = GA = c,

  ∴ ABEG是一个边长为c的正方形.

  ∴ ∠ABC + ∠CBE = 90°

  ∵ RtΔABC ≌ RtΔEBD,

  ∴ ∠ABC = ∠EBD.

  ∴ ∠EBD + ∠CBE = 90°

  即 ∠CBD= 90°

  又∵ ∠BDE = 90°,∠BCP = 90°,

  BC = BD = a.

  ∴ BDPC是一个边长为a的正方形.

  同理,HPFG是一个边长为b的正方形.

  设多边形GHCBE的面积为S,则

  ,

  ∴ .

  

【证法2】(项明达证明)

  做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.

  过点Q作QP∥BC,交AC于点P.

  过点B作BM⊥PQ,垂足为M;再过点

  F作FN⊥PQ,垂足为N.

  ∵ ∠BCA = 90°,QP∥BC,

  ∴ ∠MPC = 90°,

  ∵ BM⊥PQ,

  ∴ ∠BMP = 90°,

  ∴ BCPM是一个矩形,即∠MBC = 90°.

  ∵ ∠QBM + ∠MBA = ∠QBA = °,

  ∠ABC + ∠MBA = ∠MBC = 90°,

  ∴ ∠QBM = ∠ABC,

  又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,

  ∴ RtΔBMQ ≌ RtΔBCA.

  同理可证RtΔQNF ≌ RtΔAEF.

  

【证法3】(赵浩杰证明)

  做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形.

  分别以CF,AE为边长做正方形FCJI和AEIG,

  ∵EF=DF-DE=b-a,EI=b,

  ∴FI=a,

  ∴G,I,J在同一直线上,

  ∵CJ=CF=a,CB=CD=c,

  ∠CJB = ∠CFD = 90°,

  ∴RtΔCJB ≌ RtΔCFD ,

  同理,RtΔABG ≌ RtΔADE,

  ∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE

  ∴∠ABG = ∠BCJ,

  ∵∠BCJ +∠CBJ= 90°,

  ∴∠ABG +∠CBJ= 90°,

  ∵∠ABC= 90°,

  ∴G,B,I,J在同一直线上,

  

【证法4】(欧几里得证明)

  做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结

  BF、CD. 过C作CL⊥DE,

  交AB于点M,交DE于点L.

  ∵ AF = AC,AB = AD,

  ∠FAB = ∠GAD,

  ∴ ΔFAB ≌ ΔGAD,

  ∵ ΔFAB的面积等于,

  ΔGAD的面积等于矩形ADLM

  的面积的一半,

  ∴ 矩形ADLM的面积 =.

  同理可证,矩形MLEB的面积 =.

  ∵ 正方形ADEB的面积

  = 矩形ADLM的面积 + 矩形MLEB的面积

  ∴ ,即 a^2+b^2=c^2

  

【证法5】欧几里得的证法

  《几何原本》中的证明

  在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。 设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。

  在正式的证明中,我们需要四个辅助定理如下:

  如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理) 三角形面积是任一同底同高之平行四边形面积的一半。 任意一个正方形的面积等于其二边长的乘积。 任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。 证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。

  其证明如下:

  设△ABC为一直角三角形,其直角为CAB。 其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH。 画出过点A之BD、CE的平行线。此线将分别与BC和DE直角相交于K、L。 分别连接CF、AD,形成两个三角形BCF、BDA。 ∠CAB和∠BAG都是直角,因此C、A 和 G 都是线性对应的,同理可证B、A和H。 ∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC。 因为 AB 和 BD 分别等于 FB 和 BC,所以△ABD 必须相等于△FBC。 因为 A 与 K 和 L是线性对应的,所以四方形 BDLK 必须二倍面积于△ABD。 因为C、A和G有共同线性,所以正方形BAGF必须二倍面积于△FBC。 因此四边形 BDLK 必须有相同的面积 BAGF = AB^2。 同理可证,四边形 CKLE 必须有相同的面积 ACIH = AC^2。 把这两个结果相加, AB^2+ AC^2; = BD×BK + KL×KC 由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由于CBDE是个正方形,因此AB^2 + AC^2= BC^2。 此证明是于欧几里得《几何原本》一书第1.47节所提出的

不行了,要是要推导这个公式是很难的,我是推导不出来的

可以看看书,虽然书上也没有推导,但是是画了图形的,图形好理解

在直角三角形中,两个直角边的平方和等于斜边的平方。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
今年男篮锦标赛哪个队会夺冠啊?
在相爱中比次都没有勇气去牵对方的手难道爱情
什么叫征集志愿?应该怎么填?
有乜好睇噶书介绍?
圣龙酒家在哪里啊,我有事要去这个地方
每天开心的祝福语,每天能收到同一个人的祝福
高中理科要怎么样才能学好?(急需!)
国有后备土地是否属于国有建设用地?
急急急!是否有2010年百朗英语听力风暴的mp3
qq三国30级以上的号
购买二手台式电脑要注意什么?请详
自由幻想Jk做名誉任务杀神殿的怨灵
U盾个人网上银行
志灵副食店在哪里啊,我有事要去这个地方
校园期刊(杂志)最重要的是什么?应如何创新
推荐资讯
韩冬郎即席为诗相送,一座尽惊.他日余方追吟"
离婚是在哪个地方办理?一定要到当地结婚的地
爱、、、可以打破现实吗?
一起来看流行雨二中出现的是啥手机?
迪拜的酒店多少钱一晚,澳门酒店一般多少钱?
电脑有什么问题吗
我和好朋友喜欢同一个人,我退出了,她却说我是
小燕子家具我想知道这个在什么地方
我的N95手机一下载东西就自动关机是什么原因
人为啥会饿?
哪里能下载个手机象棋游戏 免费的 较难的 手
我的脚被热水烫了,退皮了,现在有疤痕,怎么
正方形一边上任一点到这个正方形两条对角线的
阴历怎么看 ?