【施瓦茨不等式】施瓦茨不等式的证明
答案:2 悬赏:20 手机版
解决时间 2021-02-28 19:06
- 提问者网友:却不属于对方
- 2021-02-27 18:28
【施瓦茨不等式】施瓦茨不等式的证明
最佳答案
- 五星知识达人网友:独行浪子会拥风
- 2021-02-27 19:01
【答案】 [x,y]^2 ≤ [x,x]*[y,y]
设x=(x1,x2...xn)
y=(y1,y2...yn)
则[x,y]^2=(x1y1+x2y2+...xnyn)^2
[x,x]*[y,y]=(x1^2+x2^2+...xn^2)(y1^2+y2^2+...+yn^2)
首先构造方程(x1z-y1)^2+(x2z-y2)^2+...+(xnz-yn)^2=0
z是未知数,其他的是参数.
我们知道这个方程最多只有一个解,这个方程可以改成
(x1^2+x2^2+...xn^2)z^2-2*=(x1y1+x2y2+...xnyn)*z+(y1^2+y2^2+...+yn^2)=0
那么它的Δ 追问: 谢谢啦!
设x=(x1,x2...xn)
y=(y1,y2...yn)
则[x,y]^2=(x1y1+x2y2+...xnyn)^2
[x,x]*[y,y]=(x1^2+x2^2+...xn^2)(y1^2+y2^2+...+yn^2)
首先构造方程(x1z-y1)^2+(x2z-y2)^2+...+(xnz-yn)^2=0
z是未知数,其他的是参数.
我们知道这个方程最多只有一个解,这个方程可以改成
(x1^2+x2^2+...xn^2)z^2-2*=(x1y1+x2y2+...xnyn)*z+(y1^2+y2^2+...+yn^2)=0
那么它的Δ 追问: 谢谢啦!
全部回答
- 1楼网友:雪起风沙痕
- 2021-02-27 19:11
就是这个解释
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯