若函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[-1,1)时,f(x)=|x|.则函数y=f(x)的图象与函数y=log4|x|的图象的交点的个数为_
答案:2 悬赏:70 手机版
解决时间 2021-04-10 06:35
- 提问者网友:我一贱你就笑
- 2021-04-09 08:53
若函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[-1,1)时,f(x)=|x|.则函数y=f(x)的图象与函数y=log4|x|的图象的交点的个数为________.
最佳答案
- 五星知识达人网友:有你哪都是故乡
- 2021-04-09 09:55
6解析分析:f(x)是个周期为2的周期函数,且是个偶函数,在一个周期[-1,1)上,图象是2条斜率分别为1和-1的线段,且 0≤f(x)≤1,同理得到在其他周期上的图象;y=log4|x|也是个偶函数,图象过(1,0),和(4,1),结合图象可得函数y=f(x)的图象与函数y=log4|x|的图象的交点个数.解答:由题意知,函数y=f(x)是个周期为2的周期函数,且是个偶函数,在一个周期[-1,1)上,
图象是2条斜率分别为1和-1的线段,且 0≤f(x)≤1,同理得到在其他周期上的图象.
函数y=log4|x|也是个偶函数,先看他们在[0,+∞)上的交点个数,
则它们总的交点个数是在[0,+∞)上的交点个数
的2倍,在(0,+∞)上,y=log4|x|=log4x,图象过(1,0),和(4,1),是单调增函数,与f(x)交与3个不同点,
∴函数y=f(x)的图象与函数y=log4|x|的图象的交点个数是6个.
故
图象是2条斜率分别为1和-1的线段,且 0≤f(x)≤1,同理得到在其他周期上的图象.
函数y=log4|x|也是个偶函数,先看他们在[0,+∞)上的交点个数,
则它们总的交点个数是在[0,+∞)上的交点个数
的2倍,在(0,+∞)上,y=log4|x|=log4x,图象过(1,0),和(4,1),是单调增函数,与f(x)交与3个不同点,
∴函数y=f(x)的图象与函数y=log4|x|的图象的交点个数是6个.
故
全部回答
- 1楼网友:掌灯师
- 2021-04-09 11:23
谢谢了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯
正方形一边上任一点到这个正方形两条对角线的 |
阴历怎么看 ? |