给出一组式子:32+42=52,52+122=132,72+242=252,92+402=412,112+602=612,…
(1)请你观察给出的式子,找出一些规律并写出,运用所发现的规律给出第10个式子,并利用计算器验证所得式子的正确性;
(2)已知:20032+p2=q2,其中p,q为连续正整数,且q=p+1,用较为简便的方法写出p和q的值,并利用计算器验证它的正确性.
给出一组式子:32+42=52,52+122=132,72+242=252,92+402=412,112+602=612,…(1)请你观察给出的式子,找出一些规律并写
答案:2 悬赏:10 手机版
解决时间 2021-01-24 01:39
- 提问者网友:暗中人
- 2021-01-23 16:28
最佳答案
- 五星知识达人网友:持酒劝斜阳
- 2021-01-23 18:06
解:(1)①这些式子每个都呈a2+b2=c2(a,b,c为正整数)的形式.②每个等式中a是奇数,b为偶数(实际上还是4的倍数),c奇数.③c=b+1.④各个式子中,a的取值依次为3,5,7,9,11,是连续增大的奇数.⑤各个式子中,b的取值依次为4,12,24,40
猜想:第10个式子为212+2202=2212
(2)∵20032+p2=q2,q=p+1,
∴20032=q2-p2=(p+1)2-p2=2p+1
∴p=(20032-1)÷2=2006004
∴q=p+1=2006005.解析分析:32+42=52,即(2×1+1)2+{[(2×1+1)2-1]÷2}2={[(2×1+1)2-1]÷2+1}2,
52+122=132,即(2×2+1)2+{[(2×2+1)2-1]÷2}2={[(2×2+1)2-1]÷2+1}2,
72+242=252,即(2×3+1)2+{[(2×3+1)2-1]÷2}2={[(2×3+1)2-1]÷2+1}2,
92+402=412,即(2×4+1)2+{[(2×4+1)2-1]÷2}2={[(2×4+1)2-1]÷2+1}2,
112+602=612,即(2×5+1)2+{[(2×5+1)2-1]÷2}2={[(2×5+1)2-1]÷2+1}2,
…
则(2×10+1)2+{[(2×10+1)2-1]÷2}2={[(2×10+1)2-1]÷2+1}2,即212+2202=2212.
(2n+1)2+{[(2n+1)2-1]÷2}2={[(2n+1)2-1]÷2+1}2,即(2n+1)2+[2n(n+1)]2=[2n(n+1)+1]2.点评:本题的规律为:(2n+1)2+{[(2n+1)2-1]÷2}2={[(2n+1)2-1]÷2+1}2,即(2n+1)2+[2n(n+1)]2=[2n(n+1)+1]2.
猜想:第10个式子为212+2202=2212
(2)∵20032+p2=q2,q=p+1,
∴20032=q2-p2=(p+1)2-p2=2p+1
∴p=(20032-1)÷2=2006004
∴q=p+1=2006005.解析分析:32+42=52,即(2×1+1)2+{[(2×1+1)2-1]÷2}2={[(2×1+1)2-1]÷2+1}2,
52+122=132,即(2×2+1)2+{[(2×2+1)2-1]÷2}2={[(2×2+1)2-1]÷2+1}2,
72+242=252,即(2×3+1)2+{[(2×3+1)2-1]÷2}2={[(2×3+1)2-1]÷2+1}2,
92+402=412,即(2×4+1)2+{[(2×4+1)2-1]÷2}2={[(2×4+1)2-1]÷2+1}2,
112+602=612,即(2×5+1)2+{[(2×5+1)2-1]÷2}2={[(2×5+1)2-1]÷2+1}2,
…
则(2×10+1)2+{[(2×10+1)2-1]÷2}2={[(2×10+1)2-1]÷2+1}2,即212+2202=2212.
(2n+1)2+{[(2n+1)2-1]÷2}2={[(2n+1)2-1]÷2+1}2,即(2n+1)2+[2n(n+1)]2=[2n(n+1)+1]2.点评:本题的规律为:(2n+1)2+{[(2n+1)2-1]÷2}2={[(2n+1)2-1]÷2+1}2,即(2n+1)2+[2n(n+1)]2=[2n(n+1)+1]2.
全部回答
- 1楼网友:duile
- 2021-01-23 18:40
谢谢回答!!!
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯