1.求证:x^5+y^5有因式(x+y),并把x^5+y^5分解成两个因式的乘积
答案:2 悬赏:80 手机版
解决时间 2021-03-16 13:11
- 提问者网友:呐年旧曙光
- 2021-03-16 02:45
2.求证:x^5-y^5有因式(x-y),并把x^5-y^5分解成两个因式的乘积
最佳答案
- 五星知识达人网友:想偏头吻你
- 2021-03-16 04:17
1.
x^5+y^5
=(x^4+y^4)(x+y)-x^4y-xy^4
=(x+y)(x^4-x^3y+x^2y^2-xy^3+y^4)
2.
x^5-y^5
=(x^3+y^3)(x^2-y^2)+x^3y^2-x^2y^3
=(x+y)(x^2-xy+y^2)(x+y)(x-y)+x^2y^2(x-y)
=(x-y)[(x+y)^2(x^2-xy+y^2)+x^2y^2]
=(x-y)[(x+y)(x^3+y^3)+x^2y^2)
=(x-y)[x^4+x^3y+x^2y^2+xy^3+y^4)
x^5+y^5
=(x^4+y^4)(x+y)-x^4y-xy^4
=(x+y)(x^4-x^3y+x^2y^2-xy^3+y^4)
2.
x^5-y^5
=(x^3+y^3)(x^2-y^2)+x^3y^2-x^2y^3
=(x+y)(x^2-xy+y^2)(x+y)(x-y)+x^2y^2(x-y)
=(x-y)[(x+y)^2(x^2-xy+y^2)+x^2y^2]
=(x-y)[(x+y)(x^3+y^3)+x^2y^2)
=(x-y)[x^4+x^3y+x^2y^2+xy^3+y^4)
全部回答
- 1楼网友:長槍戰八方
- 2021-03-16 05:42
1.解:原式=-(9x-13)(5+3x)
2.解:(二分之x-y)²-(二分之x+y)²
=(二分之x-y二分之x+y) -(二分之x+y二分之x-y)
=-xy
当xy=-2012时
原式=-xy
=-(-2012)
=2012
3.解:设一个奇数为2n+1,另一个奇数为2n-1(n为整数),根据题意,得:
【(2n+1)²-(2n-1)²】/8
=4n*2/8
=n
∴两个连续奇数的平方差是8的倍数
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯