已知x/(x^2-x+1)=7
求x^2/(x^4+x^2+1)的值
已知x/(x^2-x+1)=7
求x^2/(x^4+x^2+1)的值
x^4+x^2+1 = (x^2+1)^2 - x^2 = (x^2-x+1)(x^2+x+1)
所以 x^2 / (x^4+x^2+1) = [x / (x^2-x+1)][x / (x^2+x+1)]
= 7 * [x / (x^2+x+1)]
又(x^2-x+1)/x = 1/7 ,
(x^2+x+1)/x = 1/7 + 2 = 15/7
所以 [x / (x^2+x+1)] = 7/15
所以 x^2 / (x^4+x^2+1) = 49/15
因为x/(x²-x+1)=7,则(x²-x+1)/x=1/7,
即x+1/x-1=1/7
∴x+1/x=-6/7
∴(x^4+x^2+1)/x²=x²+1/x²+1=(x+1/x)²-1=(-6/7)²-1=-13/49
∴x^2/(x^4+x^2+1)=-49/13