为什么:0<x≤π/2时,x=arcsiny,而π/2<x≤π时,x=π-arcsiny
答案:2 悬赏:70 手机版
解决时间 2021-01-12 23:08
- 提问者网友:不爱我么
- 2021-01-12 03:43
为什么:0<x≤π/2时,x=arcsiny,而π/2<x≤π时,x=π-arcsiny
最佳答案
- 五星知识达人网友:鸽屿
- 2021-01-12 04:22
由y=sinx得:
x1=arcsiny,x1∈(0,π/2),y∈(0,1)
x2=π-arcsiny,x2∈(π/2,π),y∈(0,1)
∴V=∫(0,1)π[(x2)²-(x1)²]dy
=π∫(0,1)[(π-arcsiny)²-(arcsiny)²]dy
=π∫(0,1)[π(π-2arcsiny)dy
=π²[πy|(0,1)-2∫(0,1)arcsinydy]
=π²{π-2[yarcsiny|(0,1)-∫(0,1)ydy/√(1-y²)]}
=π³-2π²[π/2+1/2·∫(0,1)d(1-y²)/√(1-y²)]
=π³-2π²[π/2+1/2·2√(1-y²)|(0,1)]
=π³-2π²[π/2+(-1)]
=2π²
x1=arcsiny,x1∈(0,π/2),y∈(0,1)
x2=π-arcsiny,x2∈(π/2,π),y∈(0,1)
∴V=∫(0,1)π[(x2)²-(x1)²]dy
=π∫(0,1)[(π-arcsiny)²-(arcsiny)²]dy
=π∫(0,1)[π(π-2arcsiny)dy
=π²[πy|(0,1)-2∫(0,1)arcsinydy]
=π²{π-2[yarcsiny|(0,1)-∫(0,1)ydy/√(1-y²)]}
=π³-2π²[π/2+1/2·∫(0,1)d(1-y²)/√(1-y²)]
=π³-2π²[π/2+1/2·2√(1-y²)|(0,1)]
=π³-2π²[π/2+(-1)]
=2π²
全部回答
- 1楼网友:何以畏孤独
- 2021-01-12 04:36
将arcsin x图像画出来,然后平移
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯