已知A(0,a),B(0,b)是Y轴正正半轴上两点0,<a,<b,C(x,0)是X轴正半轴上任意一点,求当C在何位置时角ACB最大
答案:3 悬赏:60 手机版
解决时间 2021-04-15 04:30
- 提问者网友:骨子里的高雅
- 2021-04-14 05:28
已知A(0,a),B(0,b)是Y轴正正半轴上两点0,<a,<b,C(x,0)是X轴正半轴上任意一点,求当C在何位置时角ACB最大
最佳答案
- 五星知识达人网友:撞了怀
- 2021-04-14 06:58
设直线AC和BC的倾斜角分别为α, β.
tanα = (a-0)/(0-x) = -a/x
tanβ = (b-0)/(0-x) = -b/x
显然角ACB一定是锐角 = α-β
f(x)= tan(α- β) = (tanα - tanβ)/(1 + tanα*tanβ) = (-a/x + b/x)/(1 + ab/x²)= (b-a)x/(x²+ab)
f'(x) = (b-a)[1/(x²+ ab) + x*(-1)*2x/(x²+ab)²]
= (b-a)(ab - x²)/(x²+ab)² = 0
x = √(ab)
C(√(ab), 0)时角ACB最大
tanα = (a-0)/(0-x) = -a/x
tanβ = (b-0)/(0-x) = -b/x
显然角ACB一定是锐角 = α-β
f(x)= tan(α- β) = (tanα - tanβ)/(1 + tanα*tanβ) = (-a/x + b/x)/(1 + ab/x²)= (b-a)x/(x²+ab)
f'(x) = (b-a)[1/(x²+ ab) + x*(-1)*2x/(x²+ab)²]
= (b-a)(ab - x²)/(x²+ab)² = 0
x = √(ab)
C(√(ab), 0)时角ACB最大
全部回答
- 1楼网友:我住北渡口
- 2021-04-14 07:37
解:设c的坐标为(c,0)
tanaco=a/c
tanbco=b/c
tan(acb)=tab(aco-bco)=(a/c-b/c)/(1+ab/c^2)=(a-b)/(c+ab/c)
<=(a-b)/[2√(ab)]
当c=ab/c即c=√(ab)时,角acb最大,此时c坐标为(√(ab),0)
- 2楼网友:持酒劝斜阳
- 2021-04-14 07:19
设直线AC和BC的倾斜角分别为α, β.
tanα = (a-0)/(0-x) = -a/x
tanβ = (b-0)/(0-x) = -b/x
显然角ACB一定是锐角 = α-β
f(x)= tan(α- β) = (tanα - tanβ)/(1 + tanα*tanβ) = (-a/x + b/x)/(1 + ab/x²)= (b-a)x/(x²+ab)
f'(x) = (b-a)[1/(x²+ ab) + x*(-1)*2x/(x²+ab)²]
= (b-a)(ab - x²)/(x²+ab)² = 0
x = √(ab)
C(√(ab), 0)时角ACB最大
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯