如图,△ABC的内角∠ABC的平分线与外角∠ACG的平分线交于点D,过点D作BC的平行线交AB于E,交AC于F.试判断EF与BE,CF之间的关系,并说明理由.
答案:2 悬赏:60 手机版
解决时间 2021-04-08 02:02
- 提问者网友:孤山下
- 2021-04-07 22:35
如图,△ABC的内角∠ABC的平分线与外角∠ACG的平分线交于点D,过点D作BC的平行线交AB于E,交AC于F.试判断EF与BE,CF之间的关系,并说明理由.
最佳答案
- 五星知识达人网友:上分大魔王
- 2021-04-07 23:23
解:EF=BE-CF.
证明:∵BD平分∠ABC,∴∠ABD=∠DBC.
又∵ED∥BC,∴∠EDB=∠DBC;
∴∠ABD=∠EDB,∴BE=ED;
同理可证:CF=FD;
∵EF=ED-FD,
∴EF=BE-CF.解析分析:此题主要根据角平分线的定义以及平行线的性质进行角之间的等量代换,根据等边对等角,发现两个等腰三角形:△BDE和△CDF,即可得出所求的结论.点评:本题需注意的是:只要过角平分线上的点作已知角的一边的平行线和另一边相交,即可出现等腰三角形.
证明:∵BD平分∠ABC,∴∠ABD=∠DBC.
又∵ED∥BC,∴∠EDB=∠DBC;
∴∠ABD=∠EDB,∴BE=ED;
同理可证:CF=FD;
∵EF=ED-FD,
∴EF=BE-CF.解析分析:此题主要根据角平分线的定义以及平行线的性质进行角之间的等量代换,根据等边对等角,发现两个等腰三角形:△BDE和△CDF,即可得出所求的结论.点评:本题需注意的是:只要过角平分线上的点作已知角的一边的平行线和另一边相交,即可出现等腰三角形.
全部回答
- 1楼网友:刀戟声无边
- 2021-04-07 23:45
谢谢回答!!!
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯