如图,在△abc中,ab=ac,ad垂直bc,de垂直ab,df垂直ac 。那么de与df相等吗?说明你的理由。
七年级下册数学书上的第十章复习题
七年级下册数学题(几何题)
答案:2 悬赏:80 手机版
解决时间 2021-03-17 14:50
- 提问者网友:寂寞撕碎了回忆
- 2021-03-17 00:19
最佳答案
- 五星知识达人网友:深街酒徒
- 2021-03-17 00:27
其实很简单,解:de=df
∵AB=AC
∴∠B=∠C(等角对等边)
∴△ABC为等腰三角形
又∵ad⊥BC
又∵等腰三角形三线合一
∴AD平分∠BAC
因为de⊥ab df⊥ac
又∵角平分线上的点到两端的距离相等
∴de=df
(解题思路):先证明三角形ABC是等腰三角形,利用等腰三角形三线合一的性质得ad平分∠BAC 最后用角平分线到两边的距离相等的性质得出ed=df
谢谢采纳!
楼上的也可以哦!但是我有过程,优先哦!
∵AB=AC
∴∠B=∠C(等角对等边)
∴△ABC为等腰三角形
又∵ad⊥BC
又∵等腰三角形三线合一
∴AD平分∠BAC
因为de⊥ab df⊥ac
又∵角平分线上的点到两端的距离相等
∴de=df
(解题思路):先证明三角形ABC是等腰三角形,利用等腰三角形三线合一的性质得ad平分∠BAC 最后用角平分线到两边的距离相等的性质得出ed=df
谢谢采纳!
楼上的也可以哦!但是我有过程,优先哦!
全部回答
- 1楼网友:爱难随人意
- 2021-03-17 01:57
证明: ∵bd与af相交 ∴∠1=∠dgf ∵ce与af相交 ∴∠2=∠ahc 又∵∠1=∠2 ∴∠dgf=∠ahc ∴ce‖bd ∵ce‖bd ∴∠d=∠cef 又∵∠c=∠d ∴∠c=∠cef ∴ac‖df ∴∠a=∠f
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯