求高中一级数学三角涵数比较综合的题型,运用多种诱导公式的!最好带有答案…急…
答案:2 悬赏:0 手机版
解决时间 2021-03-01 03:38
- 提问者网友:太高姿态
- 2021-02-28 15:39
求高中一级数学三角涵数比较综合的题型,运用多种诱导公式的!最好带有答案…急…
最佳答案
- 五星知识达人网友:山有枢
- 2021-02-28 17:18
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:弧度制下的角的表示:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)角度制下的角的表示:sin (α+k·360°)=sinα(k∈Z)cos(α+k·360°)=cosα(k∈Z)tan (α+k·360°)=tanα(k∈Z)cot(α+k·360°)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:弧度制下的角的表示:sin(π+α)=-sinα (k∈Z)cos(π+α)=-cosα(k∈Z)tan(π+α)=tanα(k∈Z)cot(π+α)=cotα(k∈Z)角度制下的角的表示:sin(180°+α)=-sinα(k∈Z)cos(180°+α)=-cosα(k∈Z)tan(180°+α)=tanα(k∈Z)cot(180°+α)=cotα(k∈Z)公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinα(k∈Z)cos(-α)=cosα(k∈Z)tan(-α)=-tanα(k∈Z)cot(-α)=-cotα(k∈Z)公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:弧度制下的角的表示:sin(π-α)=sinα(k∈Z)cos(π-α)=-cosα(k∈Z)tan(π-α)=-tanα(k∈Z)cot(π-α)=-cotα(k∈Z)角度制下的角的表示:sin(180°-α)=sinα(k∈Z)cos(180°-α)=-cosα(k∈Z)tan(180°-α)=-tanα(k∈Z)cot(180°-α)=-cotα(k∈Z)公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:弧度制下的角的表示:sin(2π-α)=-sinα(k∈Z)cos(2π-α)=cosα(k∈Z)tan(2π-α)=-tanα(k∈Z)cot(2π-α)=-cotα(k∈Z)角度制下的角的表示:sin(360°-α)=-sinα(k∈Z)cos(360°-α)=cosα(k∈Z)tan(360°-α)=-tanα(k∈Z)cot(360°-α)=-cotα(k∈Z)小结:以上五组公式可简记为:函数名不变,符号看象限.即α+k·360°(k∈Z),-α,180°±α,360°-α的三角函数值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号.公式六:π/2±α 及3π/2±α与α的三角函数值之间的关系:(⒈~⒋)⒈ π/2+α与α的三角函数值之间的关系弧度制下的角的表示:sin(π/2+α)=cosα(k∈Z)cos(π/2+α)=-sinα(k∈Z)tan(π/2+α)=-cotα(k∈Z)cot(π/2+α)=-tanα(k∈Z)角度制下的角的表示:sin(90°+α)=cosα(k∈Z)co
全部回答
- 1楼网友:低音帝王
- 2021-02-28 17:24
我明天再问问老师,叫他解释下这个问题
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯