已知数列{an}满足:a1=1/2,1/2an+1(小一)=1/2an +大1(n属于N*)
答案:2 悬赏:10 手机版
解决时间 2021-03-14 19:13
- 提问者网友:树红树绿
- 2021-03-14 16:10
已知数列{an}满足:a1=1/2,1/2an+1(小一)=1/2an +大1(n属于N*) (1)求证:数列{1/an}是等差数列;(2)设bn=2^n/an,Tn为数列{bn}的前n项和,求Tn
最佳答案
- 五星知识达人网友:第四晚心情
- 2021-03-14 17:13
(1)
1/(2a(n+1))=1/(2an) +1
1/a(n+1) = 1/an + 2
1/a(n+1)-1/an = 2
{1/an}是等差数列, d=2
(2)
1/an -1/a1= 2(n-1)
1/an =2n
an = 1/(2n)
bn=2^n/an
= 2(n.2^n)
let
S=1.2^1+2.2^2+....+n.2^n (1)
2S= 1.2^2+2.2^3+....+n.2^(n+1) (2)
(2)-(1)
S = n.2^(n+1) -(2+2^2+...+2^n)
=n.2^(n+1) - 2(2^n-1)
= 2 - (2n-2).2^n
Tn =b1+b2+...+bn
= 2S
= 4- (4n-4).2^n
1/(2a(n+1))=1/(2an) +1
1/a(n+1) = 1/an + 2
1/a(n+1)-1/an = 2
{1/an}是等差数列, d=2
(2)
1/an -1/a1= 2(n-1)
1/an =2n
an = 1/(2n)
bn=2^n/an
= 2(n.2^n)
let
S=1.2^1+2.2^2+....+n.2^n (1)
2S= 1.2^2+2.2^3+....+n.2^(n+1) (2)
(2)-(1)
S = n.2^(n+1) -(2+2^2+...+2^n)
=n.2^(n+1) - 2(2^n-1)
= 2 - (2n-2).2^n
Tn =b1+b2+...+bn
= 2S
= 4- (4n-4).2^n
全部回答
- 1楼网友:山有枢
- 2021-03-14 17:53
因为:
a(n+1) + 1 = (2an + 1) + 1 = 2(an + 1)
[a(n+1) + 1]/(an + 1) = 2
1. 可以看出,新的数列{an + 1} 是一个等比数列,公比 q = 2
2. an + 1 = (a1 + 1) * q^(n-1) = 2 * 2^(n-1) = 2^n
所以,an = 2^n - 1
3. sn = (2^1 - 1) + (2^2 - 1) + ……+ (2^n - 1)
= (2^1 + 2^2 + ……+ 2^n) - n
= [2^(n+1) - 2^1]/(2 - 1) - n
= 2^(n+1) - (n + 2)
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯