1.函数f(x)=e^x-(2a+e)x,a属于R.(1)若对任意x大于等于1,不等式f(x)大于等
答案:2 悬赏:0 手机版
解决时间 2021-02-05 05:47
- 提问者网友:椧運幽默
- 2021-02-04 16:56
1.函数f(x)=e^x-(2a+e)x,a属于R.(1)若对任意x大于等于1,不等式f(x)大于等
最佳答案
- 五星知识达人网友:从此江山别
- 2021-02-04 17:22
1题(1)e^x-(2a+e)x>=1e^x -1>=(2a+e)xx>0∴(e^x -1)/x>=2a+e设g(x)=(e^x -1)/xg'(x)=(e^x*x-e^x+1)/x^2=[e^x(x-1)+1]/x^2x>=1∴g'(x)>0∴g(x)是增函数∴g(x)最小值=g(1)=e-1e-1>=2a+ea-e/22a+e>0e^x-(2a+e)x+b======以下答案可供参考======供参考答案1:(1)f(x)=e^x-(2a+e)x≥1.2a≤(e^x-1)/x-e.令g(x)=(e^x-1)/x-e,g(x)'=[(x-1)e^x+1]/x^2,当x≥1,g(x)'≥0.所以g(x)在x≥1时单调增。g(x)min=g(1)=-1,所以a≤-1/2(2)f(x)'=e^x-(2a+e),a>-e/2,f(x)'=0,x=ln(2a+e)e^x-(2a+e)x+b<0总是有解。b<(2a+e)x-e^x当x=ln(2a+e) [(2a+e)x-e^x]取得最小值=(2a+e-1)*ln(2a+e)b<2a+e-1)*ln(2a+e)(1)f(x)过定点(1,0),f(x)'=-(x2-ax+1)/x2.过(1,0),a=2g(1)=1+1-b=0,b=2(2)g(x)=x2+x-2=(x+2)(x-1).0<x<1,g(x)<0f(x)'=-(x2-2x+1)/x2=-(x-1)2/x2<0,所以f(x)单调减f(1)=0,0<x1时,f(x)>0,f(x)/g(x)<01<x,g(x)>0,f(x)<0.f(x)/g(x)<0(3)令h(x)=lnx+(x+1)/2x-1/x,h(x)'=1/x+1/(2x2),在x>0时单调增h(1)=0+1-1=0,所以当x>1时,h(x)=lnx+(x+1)/2x-1/x>0.将x换成n,有ln(n)+(n+1)/
全部回答
- 1楼网友:话散在刀尖上
- 2021-02-04 18:30
我检查一下我的答案
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯