参考书上的一道题,有15分的分值
已知椭圆C:x^2/a^2+y^2/b^2=1 (a>b>0)的离心率e=1/2 ,且原点O到直线 x/a+y/b=1的距离为d=(2√21)/7
第一题:求椭圆的方程
第二题:过点M(√3,0)作直线与椭圆C交于P,Q两点,求△OPQ面积的最大值
参考书上的一道题,有15分的分值
答案:1 悬赏:20 手机版
解决时间 2021-08-23 11:13
- 提问者网友:留有余香
- 2021-08-22 11:36
最佳答案
- 五星知识达人网友:迟山
- 2021-08-22 12:42
d=1/√(1/a^2+1/b^2)=2√21/7
1/a^2+1/b^2=7/12 1
1-b^2/a^2=e^2=1/4
3/4a^2-b^2=0
带入1中
的a^2=4
b^2=3
所以x^2/4+y^2/3=1
(2)连立直线方程和椭圆方程得到关于y的方程
的y1+y2和y1*y2
然后求(y1-y2)^2=39-27/(1+4k^2)
这个大于等于12
s=1/2*|OM|*√12
=3
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯