A=48×(1/3²-4+1/4²-4+...+1/100²-4),则与A最接近的正整数是???
答案:2 悬赏:0 手机版
解决时间 2021-01-30 05:54
- 提问者网友:像風在裏
- 2021-01-29 12:46
A=48×(1/3²-4+1/4²-4+...+1/100²-4),则与A最接近的正整数是???
最佳答案
- 五星知识达人网友:未来江山和你
- 2021-01-29 14:07
A=48×(1/(3²-4)+1/(4²-4)+...+1/(100²-4))
=48(1/(5*1)+1/(6*2)+1/(7*3)+...+1/(102*98))
=48*(1/4)*(1-1/5+1/2-1/6+1/3-1/7+……+1/98-1/102)
=12*(1+1/2+1/3+1/4-1/99-1/100-1/101-1/102)
=12+6+4+3-12/99-12/100-12/101-12/102
=25-(12/99+12/100+12/101+12/102)
因为48/102<12/99+12/100+12/101+12/102<48/99,所以不到0.5,,故最接近的整数是25
=48(1/(5*1)+1/(6*2)+1/(7*3)+...+1/(102*98))
=48*(1/4)*(1-1/5+1/2-1/6+1/3-1/7+……+1/98-1/102)
=12*(1+1/2+1/3+1/4-1/99-1/100-1/101-1/102)
=12+6+4+3-12/99-12/100-12/101-12/102
=25-(12/99+12/100+12/101+12/102)
因为48/102<12/99+12/100+12/101+12/102<48/99,所以不到0.5,,故最接近的整数是25
全部回答
- 1楼网友:神也偏爱
- 2021-01-29 15:46
A=48[1/(1*5)+1/(2*6)+1/(3*7)+1/(4*8)+1/(5*9)+...+1/(94*98)+1/(95*99)+1/(96*100)+1/(97*101)+1/(98*102)]
因为1/(1*5)=1/4(1/1-1/5) 1/(2*6)=1/4(1/2-1/6)
所以上式可转化为
A=48*1/4*(1-1/5+1/2-1/6+1/3-1/7+1/4-1/8+1/5-1/9+...+1/94-1/98+1/95-1/99+1/96-1/100+1/97-1/101+1/98-1/102)
=12(1+1/2+1/3+1/4-1/99-1/100-1/101-1/102)
=25-12(1/99+1/100+1/101+1/102)
约=24.52
所以A最接近正整数25
因为1/(1*5)=1/4(1/1-1/5) 1/(2*6)=1/4(1/2-1/6)
所以上式可转化为
A=48*1/4*(1-1/5+1/2-1/6+1/3-1/7+1/4-1/8+1/5-1/9+...+1/94-1/98+1/95-1/99+1/96-1/100+1/97-1/101+1/98-1/102)
=12(1+1/2+1/3+1/4-1/99-1/100-1/101-1/102)
=25-12(1/99+1/100+1/101+1/102)
约=24.52
所以A最接近正整数25
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯