系数矩阵的秩不等于增广矩阵的秩,则非线性方程组无解,如果有解,系数矩阵的秩与未知数个数相等则有唯一
答案:1 悬赏:0 手机版
解决时间 2021-08-20 15:33
- 提问者网友:放下
- 2021-08-19 16:00
系数矩阵的秩不等于增广矩阵的秩,则非线性方程组无解,如果有解,系数矩阵的秩与未知数个数相等则有唯一
最佳答案
- 五星知识达人网友:山有枢
- 2021-08-19 16:53
①系数矩阵的秩不等于增广矩阵的秩,则非线性方程组无解
证明:假如方程组有解,把解代入原方程组,则增广矩阵的末列由系数矩阵的列线性表示.
增广矩阵的秩=系数矩阵的秩.矛盾.所以方程组无解.
②如果有解,系数矩阵的秩与未知数个数相等则有唯一 .
未知数个数即系数矩阵的列数n.增广矩阵的秩也是这个列数n.增广矩阵的行秩也是n.
保留增广矩阵的行的最大无关组所对应的方程.[其他方程可以用他们线性表示,可以去掉]
而剩下的方程组,是一个“克莱姆”方程组(系数行列式≠0的方程组),解唯一.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯