分解因式:(1-7t-7t2-3t3)(1-2t-2t2-t3)-(t+1)6=________.
答案:2 悬赏:70 手机版
解决时间 2021-01-02 23:50
- 提问者网友:焚苦与心
- 2021-01-02 10:21
分解因式:(1-7t-7t2-3t3)(1-2t-2t2-t3)-(t+1)6=________.
最佳答案
- 五星知识达人网友:患得患失的劫
- 2021-01-02 11:40
t(2t2+5t+5)(t-1)(t2+2t+3)解析分析:可设(t+1)3=x,y=t2+t+2,将(1-7t-7t2-3t3)(1-2t-2t2-t3)-(t+1)6变形为(2y-3x)(y-x)-x2的形式分解因式.解答:设(t+1)3=x,y=t2+t+2,则
原式=[2(t2+t+2)-3(1+3t+3t2+t3)][(t2+t+2)-(1+3t+3t2+t3)]-[(t+1)3]2
=(2y-3x)(y-x)-x2
=2x2-5xy+2y2
=(2x-y)(x-2y)
=[2(t3+3t2+3t+1)-(t2+t+2)][(t3+3t2+3t+1)-2(t2+t+2)]
=(2t3+5t2+5t)(t3+t2+t-3)
=t(2t2+5t+5)(t-1)(t2+2t+3).
故
原式=[2(t2+t+2)-3(1+3t+3t2+t3)][(t2+t+2)-(1+3t+3t2+t3)]-[(t+1)3]2
=(2y-3x)(y-x)-x2
=2x2-5xy+2y2
=(2x-y)(x-2y)
=[2(t3+3t2+3t+1)-(t2+t+2)][(t3+3t2+3t+1)-2(t2+t+2)]
=(2t3+5t2+5t)(t3+t2+t-3)
=t(2t2+5t+5)(t-1)(t2+2t+3).
故
全部回答
- 1楼网友:鸠书
- 2021-01-02 12:51
就是这个解释
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯