已知函数f(x)=2?axa?1(a≠1)在区间(0,1]上是减函数,则实数a的取值范围是______
答案:1 悬赏:20 手机版
解决时间 2021-11-14 17:10
- 提问者网友:遮云壑
- 2021-11-14 11:40
已知函数f(x)=2?axa?1(a≠1)在区间(0,1]上是减函数,则实数a的取值范围是______
最佳答案
- 五星知识达人网友:行雁书
- 2021-11-14 12:46
若使函数的解析式有意义须满足2-ax≥0
当x∈(0,1]时,须:2-a×0≥0,且2-a≥0
得:a≤2
1<a≤2时,y=2-ax为减函数,a-1>0,故f(x)为减函数,符合条件
0<a<1时,y=2-ax为减函数,a-1<0,故f(x)为增函数,不符合条件
a=0时,f(x)为常数,不符合条件
a<0时,y=2-ax为增函数,a-1<0,故f(x)为减函数,符合条件
故a的取值范围是(-∞,0)∪(1,2]
故答案为:(-∞,0)∪(1,2]
当x∈(0,1]时,须:2-a×0≥0,且2-a≥0
得:a≤2
1<a≤2时,y=2-ax为减函数,a-1>0,故f(x)为减函数,符合条件
0<a<1时,y=2-ax为减函数,a-1<0,故f(x)为增函数,不符合条件
a=0时,f(x)为常数,不符合条件
a<0时,y=2-ax为增函数,a-1<0,故f(x)为减函数,符合条件
故a的取值范围是(-∞,0)∪(1,2]
故答案为:(-∞,0)∪(1,2]
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯