费马大定律什么意思
答案:1 悬赏:80 手机版
解决时间 2021-01-28 19:15
- 提问者网友:我没有何以琛的痴心不悔
- 2021-01-27 18:49
费马大定律什么意思
最佳答案
- 五星知识达人网友:十年萤火照君眠
- 2021-01-27 19:56
费马大定律 大约在1637年,费马在阅读丢番图著《算术》一书的拉丁文译本时,读到第Ⅱ卷第八命题"将一个平方和分为两个平方数",在书的页边空白处写了一段话,意思是说"将一个立方数分成两个立方数,一个四次幂分成两个四次幂,或者一般地将一个高于2次幂分成两个同次的幂,这是不可能的,关于此,我确信已发现了一种奇妙的证法,可惜这里的空白太小,写不下"。用现代数学语言叙述,费马猜想是说,n>2时,方程
xn+yn=zn
没有正整数解。
费马猜想又常称费马大定理,要证费马猜想是对的,只需证明
x4+y4=z4
及p是奇素数时xp+yp=zp均无正整数解。费马说,他用无穷递降法证明了前者。1676年,贝西也对n=4给出了证明,欧拉对n=3,4都给出了证明,此外勒让得与狄利克雷对n=5给出了证明,19世纪中期,库默对n<100(除37,59,67外)的奇素数给出了证明。1908年,德国数学家佛尔夫斯克尔遗言,将10万马克奖给第一个证明费马大定理的人。从费马提出这一猜想至今,已过去三个半世纪,问题仍未解决。近年来主要结果有:
(1)1977年瓦格斯塔夫证明了,对于每一个素数p<125000,费马定理都是对的。
(2)1983年,伐尔廷斯证明了1922年英国数学家莫德尔提出的猜想:如果E(x,y)为有理多项式,代数曲线E(x,y)=0的亏格≥2,则E(x,y)=0至多只有有限多个有理解。这保证,n≥4时至多只有有限个n使xn+yn=zn有整数解。
(3)1985年,爱德列曼和海斯·布朗用解析数论的方法,证明了存在无穷多个素数p,使不存在整数x,y,z,满足xp+yp=zp成立,{p不整除xyz}。
(4)1993年6月23日英国数学家K.WILER在剑桥大学牛顿数学研究所做题为"模形式,椭圆曲线和伽罗瓦表示"的学术报告。最后宣布"我证明了费马猜想"。有关专家和权威人士的初步反映大都持肯定态度。
*形如22n+1的正整数称费马数,记为En,其中E0=3,E1=5,E2=17,E3=257,E4=65537都是素数,1640年费马曾猜想,一切费马数都是素数,但1732年欧拉指出 641l E5: E5=641×6700417,从而否定了费马的这个猜想。但究竟有多少费马数是素数,是有限个还是无限个?是否有无限多个费马数是合数?这些问题都是没有解决的难题。已经知道了48个费马数不是素数,E17究竟是素数还是合数尚不得而知。费马数与尺规定作图问题有关,高斯证明了,若En是素数,则正En边形能用尺规作出。
xn+yn=zn
没有正整数解。
费马猜想又常称费马大定理,要证费马猜想是对的,只需证明
x4+y4=z4
及p是奇素数时xp+yp=zp均无正整数解。费马说,他用无穷递降法证明了前者。1676年,贝西也对n=4给出了证明,欧拉对n=3,4都给出了证明,此外勒让得与狄利克雷对n=5给出了证明,19世纪中期,库默对n<100(除37,59,67外)的奇素数给出了证明。1908年,德国数学家佛尔夫斯克尔遗言,将10万马克奖给第一个证明费马大定理的人。从费马提出这一猜想至今,已过去三个半世纪,问题仍未解决。近年来主要结果有:
(1)1977年瓦格斯塔夫证明了,对于每一个素数p<125000,费马定理都是对的。
(2)1983年,伐尔廷斯证明了1922年英国数学家莫德尔提出的猜想:如果E(x,y)为有理多项式,代数曲线E(x,y)=0的亏格≥2,则E(x,y)=0至多只有有限多个有理解。这保证,n≥4时至多只有有限个n使xn+yn=zn有整数解。
(3)1985年,爱德列曼和海斯·布朗用解析数论的方法,证明了存在无穷多个素数p,使不存在整数x,y,z,满足xp+yp=zp成立,{p不整除xyz}。
(4)1993年6月23日英国数学家K.WILER在剑桥大学牛顿数学研究所做题为"模形式,椭圆曲线和伽罗瓦表示"的学术报告。最后宣布"我证明了费马猜想"。有关专家和权威人士的初步反映大都持肯定态度。
*形如22n+1的正整数称费马数,记为En,其中E0=3,E1=5,E2=17,E3=257,E4=65537都是素数,1640年费马曾猜想,一切费马数都是素数,但1732年欧拉指出 641l E5: E5=641×6700417,从而否定了费马的这个猜想。但究竟有多少费马数是素数,是有限个还是无限个?是否有无限多个费马数是合数?这些问题都是没有解决的难题。已经知道了48个费马数不是素数,E17究竟是素数还是合数尚不得而知。费马数与尺规定作图问题有关,高斯证明了,若En是素数,则正En边形能用尺规作出。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯