如图为某机械装置的截面图,相切的两圆⊙O1,⊙O2均与⊙O的弧AB相切,且O1O2∥l1(l1为水平线),⊙O1,⊙O2的半径均为30mm,弧AB的最低点到l1的距离为30mm,公切线l2与l1间的距离为100mm.则⊙O的半径为
A.70mmB.80mmC.85mmD.100mm
如图为某机械装置的截面图,相切的两圆⊙O1,⊙O2均与⊙O的弧AB相切,且O1O2∥l1(l1为水平线),⊙O1,⊙O2的半径均为30mm,弧AB的最低点到l1的距离
答案:2 悬赏:30 手机版
解决时间 2021-04-06 21:38
- 提问者网友:自食苦果
- 2021-04-05 23:12
最佳答案
- 五星知识达人网友:拾荒鲤
- 2021-04-06 00:33
B解析分析:设⊙O的半径为R,由图可知,CE=100-30=70mm,DE=CE-CD=70-30=40mm,OD=OE-DE=R-40(mm),在Rt△OO1D中,运用勾股定理求R.解答:如图,设⊙O的半径为Rmm,依题意,得
CE=100-30=70(mm),
∵l2∥O1O2,∴CD=O1D=30(mm),
DE=CE-CD=70-30=40(mm),
OD=OE-DE=R-40(mm),
在Rt△OO1D中,O1O=R-30(mm),O1D=30mm,
由勾股定理,得O1D2+OD2=O1O2,
即302+(R-40)2=(R-30)2,
解得R=80mm.故选B.点评:根据直线与圆相切,圆与圆相切及题中的数量关系,把问题转化到直角三角形中,用勾股定理求解,是解决圆的问题常用的方法.
CE=100-30=70(mm),
∵l2∥O1O2,∴CD=O1D=30(mm),
DE=CE-CD=70-30=40(mm),
OD=OE-DE=R-40(mm),
在Rt△OO1D中,O1O=R-30(mm),O1D=30mm,
由勾股定理,得O1D2+OD2=O1O2,
即302+(R-40)2=(R-30)2,
解得R=80mm.故选B.点评:根据直线与圆相切,圆与圆相切及题中的数量关系,把问题转化到直角三角形中,用勾股定理求解,是解决圆的问题常用的方法.
全部回答
- 1楼网友:不如潦草
- 2021-04-06 00:49
哦,回答的不错
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯