(1) 扇形的弧AB的长与圆锥底面圆周的长是怎样的关系?点A和点B在圆锥的侧面上是怎样的位置关系?
(2) 若角∠AOB=90°,则圆锥底面圆半径r与扇形OAB的半径R(即OA或OB)之间有怎样的关系?
(3) 若点A在圆锥侧面上运动一圈后又回到原位,则点A运动的最短路程应该怎样设计?若r2=0.5,且∠AOB=90°,求点A运动的最短路程。
如图,沿OA将圆锥侧面剪开,展开成平面图形是扇形OAB.
答案:6 悬赏:70 手机版
解决时间 2021-02-13 05:30
- 提问者网友:雾里闻花香
- 2021-02-12 06:16
最佳答案
- 五星知识达人网友:千夜
- 2021-02-12 07:00
1)扇形的弧AB就是圆锥底面圆周展开得到的,所以扇形的弧AB的长与圆锥底面圆周的长是相等的。
点A和点B在圆锥的侧面上是同一个点。
(2)若角AOB=90度,则扇形OAB是1/4圆周,它的弧长=2πR/4=πR/2
圆锥底面圆周长=2πr= πR/2,所以r=R/4
则圆锥底面圆半径r与扇形OAB的半径R之间满足r=R/4
(3)两点之间直线最短。
画图可以看出连结AB的直线,根据勾股定理可求出=√2R^2=√2/2
点A和点B在圆锥的侧面上是同一个点。
(2)若角AOB=90度,则扇形OAB是1/4圆周,它的弧长=2πR/4=πR/2
圆锥底面圆周长=2πr= πR/2,所以r=R/4
则圆锥底面圆半径r与扇形OAB的半径R之间满足r=R/4
(3)两点之间直线最短。
画图可以看出连结AB的直线,根据勾股定理可求出=√2R^2=√2/2
全部回答
- 1楼网友:枭雄戏美人
- 2021-02-12 10:31
<1>相等,重合
- 2楼网友:冷風如刀
- 2021-02-12 09:32
1)扇形的弧AB就是圆锥底面圆周展开得到的,所以扇形的弧AB的长与圆锥底面圆周的长是相等的。
点A和点B在圆锥的侧面上是同一个点。
(2)若角AOB=90度,则扇形OAB是1/4圆周,它的弧长=2πR/4=πR/2
圆锥底面圆周长=2πr= πR/2,所以r=R/4
则圆锥底面圆半径r与扇形OAB的半径R之间满足r=R/4
(3)应该是求最短路程吧?就是求AB长度的最小值,两点之间直线最短。
画图可以看出连结AB的直线,根据勾股定理可求出=√2R^2=√2/2
- 3楼网友:狂恋
- 2021-02-12 09:17
解答:
解:(1)扇形的弧长等于其围成的圆锥的底面周长,点a与点b在圆锥的侧面上重合;
(2)∵圆锥的弧长等于底面的周长,
∴2πr=
90πr
180
即:r=4r;
(3)连接ab,则ab即为最短距离;
∵r2=0.5
∴r=
1
2 =
2
2
∵∠aob=90°,
∴
90πr2
360 =πrr
解得:r=2
2
∵oa2+ob2=2r2=ab2,
∴ab=4
最短路程长为4.
- 4楼网友:平生事
- 2021-02-12 08:39
1)扇形的弧AB就是圆锥底面圆周展开得到的,所以扇形的弧AB的长与圆锥底面圆周的长是相等的。
点A和点B在圆锥的侧面上是同一个点。
(2)若角AOB=90度,则扇形OAB是1/4圆周,它的弧长=2πR/4=πR/2
圆锥底面圆周长=2πr= πR/2,所以r=R/4
则圆锥底面圆半径r与扇形OAB的半径R之间满足r=R/4
(3)两点之间直线最短。
画图可以看出连结AB的直线,根据勾股定理可求出=√2R^2=√2/2
- 5楼网友:洎扰庸人
- 2021-02-12 07:54
(1)扇形的弧AB就是圆锥底面圆周展开得到的,所以扇形的弧AB的长与圆锥底面圆周的长是相等的。
点A和点B在圆锥的侧面上是同一个点。
(2)若角AOB=90度,则扇形OAB是1/4圆周,它的弧长=2πR/4=πR/2
圆锥底面圆周长=2πr= πR/2,所以r=R/4
则圆锥底面圆半径r与扇形OAB的半径R之间满足r=R/4
(3)两点之间直线最短。
画图可以看出连结AB的直线,根据勾股定理可求出=√2R^2=√2/2
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯