如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
(1)求线段OA所在直线的函数解析式;
(2)设抛物线顶点M的横坐标为m,请用含m的代数式表示点P的坐标.
如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止
答案:2 悬赏:0 手机版
解决时间 2021-03-14 11:56
- 提问者网友:王者佥
- 2021-03-13 21:09
最佳答案
- 五星知识达人网友:独钓一江月
- 2019-08-30 09:14
解:(1)设OA所在直线的函数解析式为y=kx,
∵A(2,4),
∴2k=4,
∴k=2,
∴OA所在直线的函数解析式为y=2x;
(2)∵顶点M的横坐标为m,且在线段OA上移动,
∴y=2m(0≤m≤2).
∴当抛物线运动到A点时,顶点M的坐标为(m,2m),
∴抛物线函数解析式为y=(x-m)2+2m.
∴当x=2时,y=(2-m)2+2m=m2-2m+4(0≤m≤2),
∴点P的坐标是(2,m2-2m+4).解析分析:(1)设直线解析式为y=kx,把点A坐标代入即可求解;
(2)根据点M在y=2x上可得相应坐标,即可用顶点式表示出相应的二次函数解析式,求出当x=2时的函数值即为点P的坐标.点评:过原点的直线解析式为y=kx;与y轴平行的直线上的点的横坐标相等.
∵A(2,4),
∴2k=4,
∴k=2,
∴OA所在直线的函数解析式为y=2x;
(2)∵顶点M的横坐标为m,且在线段OA上移动,
∴y=2m(0≤m≤2).
∴当抛物线运动到A点时,顶点M的坐标为(m,2m),
∴抛物线函数解析式为y=(x-m)2+2m.
∴当x=2时,y=(2-m)2+2m=m2-2m+4(0≤m≤2),
∴点P的坐标是(2,m2-2m+4).解析分析:(1)设直线解析式为y=kx,把点A坐标代入即可求解;
(2)根据点M在y=2x上可得相应坐标,即可用顶点式表示出相应的二次函数解析式,求出当x=2时的函数值即为点P的坐标.点评:过原点的直线解析式为y=kx;与y轴平行的直线上的点的横坐标相等.
全部回答
- 1楼网友:摆渡翁
- 2020-04-07 15:41
收益了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯