球的表面积与他内接正方体的表面积之比为多少
答案:1 悬赏:60 手机版
解决时间 2021-02-10 14:37
- 提问者网友:寂寞撕碎了回忆
- 2021-02-09 23:37
请高手做啊
最佳答案
- 五星知识达人网友:等灯
- 2021-02-10 00:40
是π:2
正方体的对角线的长度为球的直径2R
又因为a^2+a^2+a^2=4R^2
a^2=4R^2/3
正方体的表面积为
S=6a^2=8R^2
球的表面积是4πR^2。
有关系:a^2=4R^2/3,也就是说a等于三分之二倍根三乘于R的。
正方体的对角线的长度为球的直径2R
又因为a^2+a^2+a^2=4R^2
a^2=4R^2/3
正方体的表面积为
S=6a^2=8R^2
球的表面积是4πR^2。
有关系:a^2=4R^2/3,也就是说a等于三分之二倍根三乘于R的。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯