已知数列{an}各项均不为0,其前n项和为Sn,且对任意n∈N*都有(1-p)Sn=p-pan(p为大于1的常数),则an=A.B.C.pnD.pn-1
答案:2 悬赏:0 手机版
解决时间 2021-12-31 04:59
- 提问者网友:疯孩纸
- 2021-12-30 23:42
已知数列{an}各项均不为0,其前n项和为Sn,且对任意n∈N*都有(1-p)Sn=p-pan(p为大于1的常数),则an=A.B.C.pnD.pn-1
最佳答案
- 五星知识达人网友:第四晚心情
- 2021-12-30 23:55
C解析分析:由(1-p)Sn=p-pan得(1-p)Sn+1=p-pan+1两式相减得an+1=pan,又把n=1代入(1-p)Sn=p-pan得(1-p)a1=p-pa1,解得a1=p,故数列是以p为首项,p为公比的等比数列,由等比数列的通项公式可求
全部回答
- 1楼网友:上分大魔王
- 2021-12-31 00:30
感谢回答,我学习了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯