已知向量OA,OB,OC和三边a,b,c,I是三角形的内心,证明向量OI=(aOA+bOB+cOC)/(a+b+c)
已知向量OA,OB,OC和三边a,b,c,I是三角形的内心,证明向量OI=(aOA+bOB+cOC)/(a+b+c)
答案:1 悬赏:20 手机版
解决时间 2021-07-27 03:28
- 提问者网友:雨不眠的下
- 2021-07-26 19:40
最佳答案
- 五星知识达人网友:走死在岁月里
- 2021-07-26 20:27
设三角形ABC,AD为BC边上的角平分线,内心为I.
|BC|=a,|AC|=b,|AB|=c
aIA+bIB+cIC
=aIA+b(AB+IA)+c(AC+IA)
=(a+b+c)IA+b(DB-DA)+c(DC-DA)
设BC的方向向量e,则DB=e|DB|,DC=-e|DC|
又由角平分线定理,|DB|/|DC|=c/b,所以bDB+cDC=0
(a+b+c)IA+b(DB-DA)+c(DC-DA)= (a+b+c)IA- b DA- c DA =aIA+(b+c)ID
又因为IA、ID反向,用角平分线定理和合比定理:
b/CD=c/BD=(b+c)/(CD+BD)=(b+c)/a,b/CD=IA/ID,
所以IA/ID=(b+c)/a ,又因为IA、ID反向,
故aIA+bIB+cIC=aIA+(b+c)ID =0.
而aIA+bIB+cIC=a(OA-OI) +b(OB-OI)+c(OC-OI)
=-(a+b+c)OI+( aOA+bOB+cOC)
∴-(a+b+c)OI+( aOA+bOB+cOC)=0,
OI=(aOA+bOB+cOC)/(a+b+c)
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯