关于 1与 0.99999... 谁大的问题
答案:5 悬赏:80 手机版
解决时间 2021-03-16 19:39
- 提问者网友:疯孩纸
- 2021-03-16 11:38
关于 1与 0.99999... 谁大的问题
最佳答案
- 五星知识达人网友:思契十里
- 2021-03-16 13:06
关于 1 与 0.99999... 谁大的问题?
可以肯定地说,两者一样大。
你后面的推理,对本题不适用。
1 与 0.99999... 一样大,是指它们差要多小,小到任意的小,都可以做到。
所以,它们两者一样大。
可以肯定地说,两者一样大。
你后面的推理,对本题不适用。
1 与 0.99999... 一样大,是指它们差要多小,小到任意的小,都可以做到。
所以,它们两者一样大。
全部回答
- 1楼网友:怀裏藏嬌
- 2021-03-16 17:52
我是这么想的,0.999999。。。9的循环,这中间有n个9 ,等于1-1|(10^n),对吧,运用极限的思想,当n趋向无穷大的时候,对前面的那个函数求极限,=1-0=1。
- 2楼网友:执傲
- 2021-03-16 16:53
1大,你被自己绕进去了,,,,无限接近1,不是等于1,,永远不会比1打的
- 3楼网友:洒脱疯子
- 2021-03-16 15:43
相等,证明 0.9...*10=9.99..
0.9...*1=0.99...
把上面两个等式两边相减0.9..*(10-1)=9
0.9...=9/9即0.9...=1
惊讶吧
0.9...*1=0.99...
把上面两个等式两边相减0.9..*(10-1)=9
0.9...=9/9即0.9...=1
惊讶吧
- 4楼网友:笑迎怀羞
- 2021-03-16 14:12
1=1.0000000000000000000000000000000000000000000000000000000000000
>0.9999999999999999999999999999999999999999999999999999999999999
很确定的结论就是 1>0.999999999999999999999999999999999999999999,
不管后面有多少个9,都是小于1的。
你要证明1=0.9999999999999999999999999999999999999999999999999,那是不可能的。如果你证出来了,那说明你做错了~~~
至于极限,那是另一个概念。
>0.9999999999999999999999999999999999999999999999999999999999999
很确定的结论就是 1>0.999999999999999999999999999999999999999999,
不管后面有多少个9,都是小于1的。
你要证明1=0.9999999999999999999999999999999999999999999999999,那是不可能的。如果你证出来了,那说明你做错了~~~
至于极限,那是另一个概念。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯