过T(-1,0)作直线与Y^2=4X交于A.B两点,若在X轴上存在一点E(X1,0),使△ABE为等
答案:2 悬赏:50 手机版
解决时间 2021-02-22 15:42
- 提问者网友:我没有何以琛的痴心不悔
- 2021-02-22 11:01
过T(-1,0)作直线与Y^2=4X交于A.B两点,若在X轴上存在一点E(X1,0),使△ABE为等
最佳答案
- 五星知识达人网友:山有枢
- 2021-02-22 12:22
令过T(-1,0)的直线为y=k(x+1)联立y=k(x+1)y^2=4x得k^2x^2+(2k^2-4)x+k^2=0,Δ=16-16k^2令A(Xa,Ya),B(Xb,Yb)Xa+Xb=(4-2k^2)/k^2XaXb=1Ya=k(Xa+1)Yb=k(Xb+1)得AB中点C((4-2k^2)/(2k^2),2/k)过中点C,且与直线y=k(x+1)垂直的直线方程为y-2/k=-1/k(x-(4-2k^2)/(2k^2))解得E((2k^2+4)/2k^2,0)AE长为(4+4/k^2)^(1/2)AB长为(1+k^2)^1/2*(16-13k^2)^1/2*1/k^2AE^2=3/4AB^2解得k=±根号3/2得X1=19/3简单来说思路是等边三角形边AB与过AB边中点C的线段CE垂直.大致思路是这样的,算错是难免的.如果有什么问题,还是麻烦你自己算算,不好意思了.
全部回答
- 1楼网友:詩光轨車
- 2021-02-22 13:36
我检查一下我的答案
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯