翻折 勾股
答案:1 悬赏:80 手机版
解决时间 2021-05-25 05:28
- 提问者网友:焚苦与心
- 2021-05-24 12:15
最佳答案
- 五星知识达人网友:詩光轨車
- 2021-05-24 13:39
解题思路: (1)根据矩形的性质以及轴对称的性质可以得到∠G=∠GEC=90°,根据内错角相等,即可证明两条直线平行; (2)延长GH交CE于点M,结合(1)中的结论证明△GFH≌△MHC,再运用直角三角形斜边上的中线等于斜边的一半进行证明结论; (3)取PF的中点M,PC'的中点N,根据直角三角形的斜边上的中线等于斜边的一半以及三角形的中位线定理得到平行四边形,这几个平行四边形的性质证明要证明的两条线段所在的两个三角形全等,从而证明结论. 点评:综合考查图形变换的性质,逻辑推理能力以及探究能力.会熟练运用全等的性质和中位线定理解题是基本的数学能力.
解题过程:
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯