高二.数学题.椭圆
答案:1 悬赏:0 手机版
解决时间 2021-07-30 03:49
- 提问者网友:niaiwoma
- 2021-07-29 16:13
椭圆离心率定义!及标准方程
最佳答案
- 五星知识达人网友:执傲
- 2021-07-29 16:33
离心率统一定义是动点到焦点的距离和动点到准线的距离之比
椭圆扁平程度的一种量度,离心率定义为椭圆两焦点间的距离和长轴长度的比值。
离心率=(ra-rp)/(ra+rp),ra指远点距离,rp指近点距离。
圆的离心率=0
椭圆扁平程度的一种量度,离心率定义为椭圆两焦点间的距离和长轴长度的比值。
离心率=(ra-rp)/(ra+rp),ra指远点距离,rp指近点距离。
圆的离心率=0
椭圆的离心率:e=c/a(0,1)(c,半焦距;a,长半轴(椭圆)/实半轴(双曲线) )
标准方程为:
高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程中的“标准”指的是中心在原点,对称轴为坐标轴。
椭圆的标准方程有两种,取决于焦点所在的坐标轴:
1)焦点在X轴时,标准方程为:x^2/a^2+y^2/b^2=1 (a>b>0)
2)焦点在Y轴时,标准方程为:x^2/b^2+y^2/a^2=1 (a>b>0)
其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,焦距与长.短半轴的关系:b^2=a^2-c^2 ,准线方程是x=a^2/c和x=-a^2/c
又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。既标准方程的统一形式。
椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ
标准形式的椭圆在x0,y0点的切线就是 : xx0/a^2+yy0/b^2=1
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯