观察下列各式:
1²+(1*2)²+2²=9=3²
2²+(2*3)²+3²=49=7²
3²+(3*4)²+4²=169=13²
……
(1)请写出第五个等式
(2)你发现了什么规律?用含有n的等式表示出来.(n为正整数)
观察下列各式:1²+(1*2)²+2²=9=3²2²+(2*3)&su
答案:1 悬赏:30 手机版
解决时间 2021-07-19 15:07
- 提问者网友:精神病院里
- 2021-07-18 18:17
最佳答案
- 五星知识达人网友:玩家
- 2021-07-18 18:54
1^2+(1*2)^2+2^2=9=3^2
2^2+(2*3)^2+3^2=49=7^2
3^2+(3*4)^2+4^2=169=13^2
(1)请写出第五个等式
5^2+(5*6)^2+6^2=961=31^2
(2)你发现了什么规律?用含有n的等式表示出来.(n为正整数)
n^2 + [n*(n+1)]^2 + (n+1)^2 = [n*(n+1)+1]^2
很明显等式成立.
因为右式[n*(n+1)+1]^2展开为
[n*(n+1)+1]^2 = [n*(n+1)]^2 +2n(n+1) +1
= [n*(n+1)]^2 +2n^2+2n +1
= [n*(n+1)]^2 +(n^2+2n +1)+n^2
= [n*(n+1)]^2 +(n+1)^2+n^2
= 左式
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯