永发信息网

已知函数f(x)=根号3sinωx+cos(ωx+π/3)+cos(ωx-π/3)(ω>0)

答案:2  悬赏:50  手机版
解决时间 2021-12-25 09:21
(1)求函数的值域 (2)若函数的最小正周期为π/2,则当x∈[0,π/2]时,求函数的单调递减区间
最佳答案
1
f(x)=√3sinωx+cos(ωx+π/3)+cos(ωx-π/3)(ω>0)
=√3sinwx+coswxcosπ/3-sinwxsinπ/3+coswxcosπ/3+sinwxsinπ/3
=√3sinwx+2coswxcosπ/3
=√3sinwx+coswx
=2(√3/2*sinwx+1/2*coswx)
=2sin(wx+π/6)
f(x)的值域为[-2,2]
2
∵函数的最小正周期T=π/2
∴2π/w=π/2 ∴w=4
∴f(x)=2sin(4x+π/6)
由2kπ+π/2≤4x+π/6≤2kπ+3π/2,k∈Z
得 kπ/2+π/12≤x≤kπ/2+π/3,k∈Z
∵x∈[0,π/2]
取k=0,得[0,π/2]上的递减区间 [π/12,π/3]
全部回答
已知函数f(x)=(√3)sin(ωx+φ)-cos(ωx+φ)(o<φ<π,ω>0)为偶函数且函数y=f(x)图像的两相邻对称轴间的距离为π/2.求f(π/8)的值;还有一问是:将函数y=f(x)的图像向右平移π/6个单位后,得到函数y=g(x)的图像,求g(x)的单调递减区间. 解:f(x)=(√3)sin(ωx+φ)-cos(ωx+φ) =-2[(1/2)cos(ωx+φ)-(√3/2)sin(ωx+φ)] =-2[cos(π/3)cos(ωx+φ)-sin(π/3)sin(ωx+φ)] =-2cos(ωx+φ+π/3) ∵f(x)是偶函数,0<φ<π,∴φ=π-π/3=2π/3 故f(x)=2cos(ωx) ∵函数y=f(x)图像的两相邻对称轴间的距离为π/2.∴ω=2. 故f(x)=2cos2x. 于是f(π/8)=2cos(π/4)=√2. 向右平移π/6得g(x)=2cos[2(x-π/6)]=2cos(2x-π/3) g(x)的单调递减区间为(kπ+π/6,kπ+2π/3)
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
石泉县气象局地址有知道的么?有点事想过去!
手臂大臂上的肉肉如何减掉
北京朝阳区411公交有多少站
汉阴县气象局地址在哪?我要去那里办事
如图是一场战争后留下的建筑物残迹,它记录着
刷机时提示选择长度不能为0 怎么回事
HTML中如何设置表格中文字与下边框距离
While parents, particularly mothers, have
小学学英语软件哪个好
白蚁吃什么
20多个房间的客房算酒店还是旅馆?还是宾馆?
定居在国外的中国华人仍然在生活方式和习俗方
开发框架是什么意思
英雄联盟白银到黄金几局几胜
What sets human beings apart from animals
推荐资讯
从沈阳到埃及需要多长时间啊?沈阳人去那边能
藕坏了能吃吗
2013word文档的目录虚线怎么打? 10分
丑的英文单词怎么写
死神被腰斩是什么意思?
可持续性职业的要素是什么?有什么书籍可以推
中秋节作文开头怎么写
外汇交易保证金是什么?
dnf一直都是载入中进不了怎么办
单选题为了解决水资源短缺问题,北京市计划在
我叔叔的女儿是我的什么关系?
在石油产品中 需要测定其滴熔点 其实我也明白
正方形一边上任一点到这个正方形两条对角线的
阴历怎么看 ?