已知:如图,四边形ABCD是正方形,G是BC上任意一点(点G与B、C不重合),AE⊥DG于E,CF⊥DG于F.
求证:△AED≌△DFC.
已知:如图,四边形ABCD是正方形,G是BC上任意一点(点G与B、C不重合),AE⊥DG于E,CF⊥DG于F.求证:△AED≌△DFC.
答案:2 悬赏:30 手机版
解决时间 2021-12-17 18:38
- 提问者网友:厌今念往
- 2021-12-17 10:59
最佳答案
- 五星知识达人网友:邮几度海风
- 2021-12-17 11:40
证明:∵四边形ABCD是正方形,
∴AD=DC,∠ADC=90°.
又∵AE⊥DG,CF⊥AE,
∴∠AED=∠DFC=90°,
∴∠EAD+∠ADE=∠FDC+∠ADE=90°,
∴∠EAD=∠FDC.
∴△AED≌△DFC(AAS).解析分析:利用正方形的特性可知AD=DC,∠ADC=90°,再结合题中所给的有关角的等量关系可证明△AED≌△DFC.点评:本题考查三角形全等的判定及正方形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
∴AD=DC,∠ADC=90°.
又∵AE⊥DG,CF⊥AE,
∴∠AED=∠DFC=90°,
∴∠EAD+∠ADE=∠FDC+∠ADE=90°,
∴∠EAD=∠FDC.
∴△AED≌△DFC(AAS).解析分析:利用正方形的特性可知AD=DC,∠ADC=90°,再结合题中所给的有关角的等量关系可证明△AED≌△DFC.点评:本题考查三角形全等的判定及正方形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
全部回答
- 1楼网友:怕倦
- 2021-12-17 13:09
谢谢回答!!!
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯
正方形一边上任一点到这个正方形两条对角线的 |
阴历怎么看 ? |