一元二次方程两根之比为3:5,求证:64ac=15b^2
答案:2 悬赏:50 手机版
解决时间 2021-08-24 08:53
- 提问者网友:风月客
- 2021-08-24 02:31
一元二次方程两根之比为3:5,求证:64ac=15b^2
最佳答案
- 五星知识达人网友:摆渡翁
- 2021-08-24 03:01
设2根为m和n,m/n=3/5.故m=3/5n.m+n=8/5n=-b/a(1),mn=3/5n^2=c/a(2).(1代入(2)得3/5*(-5b/8a)^2=c/a,化简可得64ac=15b^2.
全部回答
- 1楼网友:举杯邀酒敬孤独
- 2021-08-24 03:19
设二根分别为 3k 5k 则有
3k+5k=-b/a 3k*5k=c/a
k=-b/8a k^2=c/15a
消k得 b^2/64a^2=c/15a
所以 64ac=15b^2
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯