求证(x1+x2+...xn)^2/2(x1^2+x2^2+.xn^2)≤x1/(x2+x3)+x2/(x3+x4)+.xn/(x1+x2)
求证(x1+x2+...xn)^2/2(x1^2+x2^2+.xn^2)≤x1/(x2+x3)+x2/(x3+x4)+.
答案:2 悬赏:0 手机版
解决时间 2021-12-23 19:05
- 提问者网友:孤山下
- 2021-12-23 14:39
最佳答案
- 五星知识达人网友:七十二街
- 2021-12-23 15:13
证明: 由排序不等式, x1^2+x2^2+...+xn^2>=x1x2+x2x3+...xn-1xn+xnx1 x1^2+x2^2+...+xn^2>=x1x3+x2x4+...xn-1x1+xnx2 两式相加得 2(x1^2+x2^2+...+xn^2)>=x1(x2+x3)+x2(x3+x4)+...+xn-1(xn+x1)+xn(x1+x2) 又因为由柯西不等式 [x1/(x2+x3)+x2/(x3+x4)+...+xn/(x1+x2)]*[x1(x2+x3)+x2(x3+x4)+...+xn(x1+x2)] >=(x1+x2+...+xn)^2 所以 [x1/(x2+x3)+x2/(x3+x4)+...+xn/(x1+x2)]*2(x1^2+x2^2+...+xn^2) >=(x1+x2+...+xn)^2 即 (x1+x2+...xn)^2/2(x1^2+x2^2+...+xn^2)
全部回答
- 1楼网友:你可爱的野爹
- 2021-12-23 16:45
感谢回答
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯