【高一数学】(必修四)已知sinα,cosα是关于x的二次方程2x²+(√2+1)x+m=0的两个根
求(cosα·sin²α)/( sin²α-cos²α)+(sinα)/(1-tan²α)的值
【要有准确、有根据的过程】
【高一数学】(必修四)已知sinα,cosα是关于x的二次方程2x²+(√2+1)x+m=0的两个根
答案:1 悬赏:50 手机版
解决时间 2021-04-22 00:54
- 提问者网友:战皆罪
- 2021-04-21 15:24
最佳答案
- 五星知识达人网友:我住北渡口
- 2021-04-21 16:28
根据韦达定理:sinα+cosα=-b/a=-(√2+1)/2 ,sinα·cosα=c/a=m/2
则(cosα·sin²α)/( sin²α-cos²α) + (sinα)/(1-tan²α)
=-(cosα·sin²α)/(cos²α-sin²α) + (sinα)/[1 - (sinα/cosα)²]
=-(cosα·sin²α)/(cos²α-sin²α) + (sinα)/[(cos²α)/(cos²α) - (sin²α)/(cos²α)]
=-(cosα·sin²α)/(cos²α-sin²α) + (sinα)/[(cos²α - sin²α)/(cos²α)]
=-(cosα·sin²α)/(cos²α-sin²α) + (sinα·cos²α)/(cos²α - sin²α)
=[-(cosα·sin²α)+(sinα·cos²α)]/(cos²α - sin²α)
=[(sinα·cosα)(cosα-sinα)]/[(cosα+sinα)(cosα-sinα)]
=(sinα·cosα)/(cosα+sinα)
=(m/2)/[-(√2+1)/2]
=-m/(√2+1)
如果要求出m的值,只需要将sinα+cosα=-(√2+1)/2两边平方,再将sinα·cosα=m/2代入,就可求出.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯