已知平面上三个向量a,b,c的模均为1,它们相互之间夹角为120度,求证:(a-b)垂直c
答案:2 悬赏:20 手机版
解决时间 2021-02-03 17:05
- 提问者网友:送舟行
- 2021-02-03 09:25
已知平面上三个向量a,b,c的模均为1,它们相互之间夹角为120度,求证:(a-b)垂直c
最佳答案
- 五星知识达人网友:迷人又混蛋
- 2021-02-03 09:34
设 向量a,b,c 为 OA,OB,OC则 (a-b) = BA角AOB = 120度,OA=OB=1所以 角ABO = 30度反向延长OC 到D角DOB = 60度所以(a-b)垂直c======以下答案可供参考======供参考答案1:、、(做题之前、先考虑知识点、、)此题考察的是证明向量垂直、所一 可以证明两个向量的点乘等于零、、有了这个思路、、就可以做题了、、一步一步推、、就可以了、、由题可得、|a|=|b|=|c| 角度=120°、、 然后约分就Ok、、(给分吧、、谢了、)供参考答案2:(a-b)c=ac-bc=|a||c|cos-|b||c|cos=0所以它们垂直
全部回答
- 1楼网友:三千妖杀
- 2021-02-03 11:00
这下我知道了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯