在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=根号3,cos²A-cos²
答案:1 悬赏:0 手机版
解决时间 2021-12-01 21:58
- 提问者网友:不爱我么
- 2021-12-01 14:09
在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=根号3,cos²A-cos²
最佳答案
- 五星知识达人网友:患得患失的劫
- 2021-12-01 15:14
您好:在三角形ABC中,内角A,B,C所对的边分别为a,b,c,已知a≠b,c=根号3,cosA^2-cosB^2=根号3sinAcosA-根号3sinBcosB.
1.求角C的大小。
cosA^2-cosB^2=根号3sinAcosA-根号3sinBcosB
cosA^2-根号3sinAcosA=cosB^2-根号3sinBcosB
cosA(cosAcosπ/3-sinAsinπ/3)=cosB(cosBcosπ/3-sinBsinπ/3)
cosAcos(A+π/3)=cosBcos(B+π/3)
cos(2A+π/3)+cosπ/3=cos(2B+π/3)+cosπ/3
cos(2A+π/3)=cos(2B+π/3)
A=B或A+B=2π/3
已知a≠b所以A+B=2π/3
C=π/3
2.若sinA=4/5,求三角形ABC面积
C=π/3,c=根号3,sinA=4/5,得
a=8/5
cosA=3/5
sinB=sin(A+C)=(4+3√3)/10
三角形ABC面积=0.5*a*c*sinB=(8√3+18)/25
希望对您的学习有帮助
【满意请采纳】O(∩_∩)O谢谢
欢迎追问O(∩_∩)O谢谢
祝学习进步~
1.求角C的大小。
cosA^2-cosB^2=根号3sinAcosA-根号3sinBcosB
cosA^2-根号3sinAcosA=cosB^2-根号3sinBcosB
cosA(cosAcosπ/3-sinAsinπ/3)=cosB(cosBcosπ/3-sinBsinπ/3)
cosAcos(A+π/3)=cosBcos(B+π/3)
cos(2A+π/3)+cosπ/3=cos(2B+π/3)+cosπ/3
cos(2A+π/3)=cos(2B+π/3)
A=B或A+B=2π/3
已知a≠b所以A+B=2π/3
C=π/3
2.若sinA=4/5,求三角形ABC面积
C=π/3,c=根号3,sinA=4/5,得
a=8/5
cosA=3/5
sinB=sin(A+C)=(4+3√3)/10
三角形ABC面积=0.5*a*c*sinB=(8√3+18)/25
希望对您的学习有帮助
【满意请采纳】O(∩_∩)O谢谢
欢迎追问O(∩_∩)O谢谢
祝学习进步~
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯