递增的等比数列﹛an﹜的前3项积为512,且这三项分别减去1,3,9后成等差数列,求证1/a1+2/a2+…﹢n/an﹤1
递增的等比数列﹛an﹜的前3项积为512,且这三项分别减去1,3,9后成等差数列,求证1/a1+2/a2+…﹢n/an﹤
答案:2 悬赏:60 手机版
解决时间 2021-12-28 22:52
- 提问者网友:星軌
- 2021-12-28 01:15
最佳答案
- 五星知识达人网友:我住北渡口
- 2021-12-28 02:52
a1*a2*a3=512 =>(a1*q)^3=512 => a1*q=8 =>a2=8
(a1-1)+(a3-9)=2*(a2-3) => (a1-1)+(a2*q-9)=2*(8-3) => a1+8q=20 =>a2/q+8q=20
解得q=2 (q=1/2不合题意,舍去)
a1=4
an=a1*q^(n-1)=4*2^(n-1)=2^(n+1)
Bn=n/An=n/2^(n+1)
Sn=B1+b2+...+Bn
=1/4+2/8+...+(n-1)/2^n+n/2^(n+1)
2Sn=1/2+2/4+...+(n-1)/2^(n-1)+n/2^n
相减有
Sn=(1/2+1/4+1/8+...+1/2^n)-n/2^(n+1)
=(1/2)*[(1/2)^n-1]/(1/2-1)]-n/2^(n+1)
=1-(1/2)^n-n/2^(n+1)
全部回答
- 1楼网友:佘樂
- 2021-12-28 04:22
谢谢解答
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯