已知关于x的一元二次方程x2-2(m+1)x+m2-2m-3=0的两个不相等的实根中,有一个根是0,求m的值.
答案:2 悬赏:0 手机版
解决时间 2021-03-23 11:48
- 提问者网友:相思似海深
- 2021-03-23 02:55
已知关于x的一元二次方程x2-2(m+1)x+m2-2m-3=0的两个不相等的实根中,有一个根是0,求m的值.
最佳答案
- 五星知识达人网友:何以畏孤独
- 2021-03-23 04:23
解:∵x=0是原方程的根,
∴m2-2m-3=0.
解得m1=3,m2=-1.
又b2-4ac=[-2(m+1)]2-4(m2-2m-3)=16m+16.
∵方程有两个不等的实根,
∴b2-4ac>0,得16m+16>0,得m>-1.
故应舍去m=-1,得m=3为所求.解析分析:首先解出一元二次方程,再利用b2-4ac=[-2(m+1)]2-4(m2-2m-3)=16m+16,得出m的取值范围,即可得出
∴m2-2m-3=0.
解得m1=3,m2=-1.
又b2-4ac=[-2(m+1)]2-4(m2-2m-3)=16m+16.
∵方程有两个不等的实根,
∴b2-4ac>0,得16m+16>0,得m>-1.
故应舍去m=-1,得m=3为所求.解析分析:首先解出一元二次方程,再利用b2-4ac=[-2(m+1)]2-4(m2-2m-3)=16m+16,得出m的取值范围,即可得出
全部回答
- 1楼网友:天凉才是好个秋
- 2021-03-23 05:21
谢谢了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯