如图所示,已知等腰△ABC中AB=AC,AD是△ABC的角平分线,E是AC延长线上一点,且CE=CD,AD=DE.
(1)求证:△ABC是等边三角形;
(2)如果把AD改为△ABC的中线或高,(其它条件不变)请判断(1)中结论是否依然成立?(不要求证明)
如图所示,已知等腰△ABC中AB=AC,AD是△ABC的角平分线,E是AC延长线上一点,且CE=CD,AD=DE.(1)求证:△ABC是等边三角形;(2)如果把AD改
答案:2 悬赏:60 手机版
解决时间 2021-12-29 10:08
- 提问者网友:原来太熟悉了会陌生
- 2021-12-29 02:27
最佳答案
- 五星知识达人网友:十年萤火照君眠
- 2021-12-29 03:55
(1)证明:∵CD=CE,∴∠E=∠CDE,
∴∠ACB=2∠E.
又∵AD=DE,∴∠E=∠DAC,
∵AD是△ABC的角平分线,
∴∠BAC=2∠DAC=2∠E,
∴∠ACB=∠BAC,∴BA=BC.
又∵AB=AC,∴AB=BC=AC.
∴△ABC是等边三角形.
(2)解:当AD为△ABC的中线或高时,结论依然成立.解析分析:(1)根据等腰三角形的性质可得,角平分线AD同时也是三角形ABC底边BC的高,即∠ADC=90°. 再加上已知条件可推出∠DAC=30°,即可知三角形ABC是等边三角形.(2)在等腰三角形ABC中,如果其他条件不变,则AD同时是角平分线、中线及高,所以(1)中结论仍然成立.点评:此题主要考查了等边三角形的判定,综合利用了等腰三角形和直角三角形的性质. 同时要掌握等腰三角形中底边的高、中线和角平分线重合的性质.
∴∠ACB=2∠E.
又∵AD=DE,∴∠E=∠DAC,
∵AD是△ABC的角平分线,
∴∠BAC=2∠DAC=2∠E,
∴∠ACB=∠BAC,∴BA=BC.
又∵AB=AC,∴AB=BC=AC.
∴△ABC是等边三角形.
(2)解:当AD为△ABC的中线或高时,结论依然成立.解析分析:(1)根据等腰三角形的性质可得,角平分线AD同时也是三角形ABC底边BC的高,即∠ADC=90°. 再加上已知条件可推出∠DAC=30°,即可知三角形ABC是等边三角形.(2)在等腰三角形ABC中,如果其他条件不变,则AD同时是角平分线、中线及高,所以(1)中结论仍然成立.点评:此题主要考查了等边三角形的判定,综合利用了等腰三角形和直角三角形的性质. 同时要掌握等腰三角形中底边的高、中线和角平分线重合的性质.
全部回答
- 1楼网友:轮獄道
- 2021-12-29 04:47
这下我知道了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯